AFRL-SN-RS-TR-1999-94
Final Technical Report
May 1999

THE EIGENCANCELER: SPACE TIME ADAPTIVE
RADAR BY EIGENANALYSIS METHODS

New Jersey Institute of Technology

Alexander M. Haimovich and Tareq F. Ayoub

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19990719 123

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
ROME RESEARCH SITE

DTIC QUALITY
INSPECTED 4 ROME, NEW YORK




This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-SN-RS-TR-1999-94 has been reviewed and is approved for publication.

APPROVED: %&WA

MARK L. PUGH
Project Engineer

FOR THE DIRECTOR: /? OM /é( ’ ]ﬂ -

ROBERT G. POLCE, Acting Chief
Rome Operations Office
Sensors Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/SNRT, 26 Electronic Parkway, Rome, NY 13441-
4514. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.




Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Pubic reporting burden for this collection of wiormation is sstenated 1o sverage | hour per responss, mchuding the time for reviswing mstructions, 38archang axisting data sources, athenng and mamtssrwng the dats nesded. and completing and
the collection of Send ragardang this burden estanate or sny other aspact of this collection of nformation, Includng Suggestions for reducwg ths burden, to Washington Headquarters Sernces, Directorate tor Information
Dperations and Reports, 1215 Jefterson Davis Highway, ‘Sute 1204, Arkagton, VA 22202-4302, and to the Office of Mansgement and Budge!, Paperwork Reduction Proct (0704-0188), Washington, OC 20503

1. AGENCY USE ONLY [Leave blank] 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1999 Final Jul 94 - Nov 97
4. TITLE AND SUBTITLE ~ — ' 5. FUNDING NUMBERS
THE EIGENCANCELER: SPACE TIME ADAPTIVE RADAR BY C - F30602-94-1-0012
EIGENANALYSIS METHODS PE - 62702F
PR - 4600
6. AUTHOR(S! TA - A0
WU - A9
Alexander M. Haimovich and Tareq F. Ayoub
e —
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
New Jersey Institute of Technology N/A
323 Martin Luther King Blvd.
Newark NJ 07102-1982
e
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Air Force Research Laboratory/SNRT
26 Electronic Parkway
Rome NY 134414514

AFRL-SN-RS-TR-1999-94

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Mark L. Pugh/SNRT/(315) 330-7684

| E—— R R T e
12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

I ——
13. ABSTRACT (Maximum 200 words)
In airborne surveillance radar applications, adaptive antennas provide for the detection of small targets in severe clutter

environments. Adaptive antennas are currently being considered for the design of next generation surveillance platforms.
The radar problem is two-dimensional with radar returns being a function of both angle and Doppler. Space-Time Adaptive
Processing (STAP) is required for rejection of interferences in the space-time domains. To make STAP feasible for
incorporation into future systems, low complexity algorithms are required. The space-time radar problem is well suited to
the application of techniques that take advantage of the low-rank properties associated with the interference in such radars.
The Eigencanceler is an interference cancellation method based on the spectral decomposition (eigenanalysis) of the
space-time covariance matrix. The linear space spanned by the columns of the space-time covariance matrix is formed by
the union of the algebraic spaces of the interference and the noise. The Eigencanceler's weight vector is designed to lie in
the noise subspace and to provide a prescribed gain to the desired signal. Thus significant computational savings are realized
since a Weiner filter requires a matrix inversion, while the eigencanceler is implemented by computing only a limited
number of interference eigenvectors.

14. SUBJECT TERMS 15. NUMBER OF PAGES
' 132
Space-Time Adaptive Processing, Eigenanalysis, Signal Processing 16. PRICE CODE
T T STV CLASSIFICATION |
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Stondard Form 298 (Rev. 2-89) (EG] '

acribed by ANSI Std. 238,18
Dovigued using Portorm Pra, WHSIDIOR, Oct 84




EXECUTIVE SUMMARY

This report summarizes the work on “The Eigencanceler: Space-Time Adaptive Radar by
Eigenanalysis Methods” carried out at the New Jersey Institute of Technology from 6/94 to
9/97. The main contribution of this work was to develop and study an adaptive radar signal
processing method referred to as eigencanceler. In airborne surveillance radar applications,
adaptive antennas provide for the detection of small targets in severe clutter environments.
Adaptive antenna arrays are currently being considered for the design of the next generation
surveillance platforms. The radar problem is two-dimensional with radar returns being a
function of both angle and Doppler. Space-time adaptive processing (STAP) is required
for rejection of interferences in the space-time domains. To make STAP feasible for incor-
poration in future systems, low complexity algorithms are required. The space-time radar
problem is well suited to the application of techniques that take advantage of low-rank
property associated with the interference in such radars.

The eigencanceler is an interference cancellation method based on the spectral decompo-
sition (eigenanalysis) of the space-time covariance matrix. The linear space spanned by the
columns of the space-time covariance matrix is formed by the union of the algebraic spaces
of the interference and the noise. The eigencanceler’s weight vector is designed to lie in
the noise subspace, and to provide a prescribed gain to the desired signal. Thus significant
computational savings are realized since a Wiener filter requireds a matrix inversion, while
the eigencanceler is implemented by computing only a limited number of eigenvectors (inter-
ference eigenvectors).

Application of Wiener filtering required knowledge of the true space-time covariance matrix.
In radar applications, the space-time covariance matrix (including contributions of jammers,
clutter, and noise) cannot be known a priori, hence it needs to be estimated from the obser-
vations. The sample matrix inversion method (SMI) consists of substituting the estimated
covariance matrix for the true coavariance matrix in the Wienre filter. It is well known that
to achieve an output signal-to-noise ratio (SNR) within 3 dB of the optimal, the number of
independent space-time snapshots required is K = 2N, where N is the dimensionality of the
space-time array. While preserving the linear architecture of the radar detector, the SMI
detector has a number of drawbacks: (1) it is not optimal for detection performance, (2) it
has slow convergence for large dimensionallity N (i.e., large number of snapshots required),
(3) it is sensitive to calibration errors, (4) it is not CFAR. In this report it is shown that the
eigencanceler addresses many of the SMI’s deficiencies.

The following specific contributions of this report are noted:

1. Formulation of the eigencanceler method [1, 2]. The eigencancler provides better
detection performance in cases of limited data support (low number of snapshots for
coavariance matrix estimation). It is shown that the number of snapshots required is
K = 2r, where r is the rank of the interference subspace. For a calibrated space-time
array, r is usually much smaller than the array dimensionallity N. Alternatively, for
the same number of snapshots, the eigencanceler delivers much better performance.

2. Development of the theory of the eigencanceler. Radar performance is commonly
measured in terms of detection and false alarm probabilities. In turn, those are
determined by the, so-called, conditioned signal-to-noise ratio (CSNR). The statistical
characterization of the SMI CSNR has been known for some time. In this report
the probability density function of the eigencanceler is developed. This work has
been also published in a recent journal publication [3]. The development is based on
the asymptotic distribution of the principal components of the covariance matrix. It
is shown that, unlike the SMI method, the eigencanceler yields a conditioned SNR
distribution that is dependent on the covariance matrix. Several covariance matrix
independent approximations of the distribution are developed for the large interference-
to-noise case.




3. Performance analysis of the eigencanceler. This work is significant in that several
adaptive methods were evaluated using experimental data supplied by the Air Force
Research Laboratory (AFRL). The performance of the eigenanalysis-based detector
is analyzed with respect to convergence rate and robustness to calibration errors.
Analytical expressions are developed for receiver operating curves when the clutter
signal environment is assumed to be Gaussian. Simulation results are provided
to corroborate the theoretical analysis. Examples of experimental data from the
Mountaintop dataset are used to illustrate the higher convergence rate and increased
robustness of the eigenanalysis method. In the course of this work various techniques
had to be developed to enable the utilization of the experimental data, such as
calibrations and other processes. This work is also reported on in the journal publi-
cation [4] and conference publications [5, 6]. It is shown, through analysis of the
Mountaintop dataset, that the SMI method is very sensitive to target leakage in the
training set. This requires large guard rails around the cell under test. It is shown
that the eigencanceler is less susceptible to this type of errors. '

4. Other reduced-rank methodss are also studied. These methods’ utility is demonstrated
by simulations in terms of the output signal-to-noise ratio and detection probability.
It is shown that reduced-rank processing has two opposite effects on the performance:
increased statistical stability which tends to improve performance, and introduction
of a bias which lowers the signal-to-noise ratio. Several reduced-rank methods are
analyzed and compared for both cases of known and unknown covariance matrix.
While best performance is obtained using transforms based on the eigendecompo-
sition (data dependent), the loss incurred by the application of fixed transforms (such
as the discrete cosine transform) is relatively small. The main advantage of fixed
transforms is the availability of efficient computational procedures for their imple-
mentation. These findings suggest that reduced-rank methods could facilitate the
development of practical, real-time STAP technology. This work is also reported on
in publications [7].

5. The application of the eigencanceler to the high pulse repetition frequency (HPRF)
radar is demonstrated. High pulse repetition frequency radars are employed for
airborne applications due to their capability to place high closing-rate targets in
the clutter-free region. The highly ambiguous range returns, may however, cause
low Doppler targets to compete with near-range strong clutter. It is shown that
STAP techniques are required to reject the near-range clutter returns which mask
low Doppler targets. As a result of range ambiguity of the HPRF radar, the sample
support for estimating the array covariance matrix is limited, leading to an ill-
conditioned problem. Hence, the traditional SMI technique, if applicable, results in
poor performance. Reduced rank techniques such as the eigencanceler applied to the
HPRF airborne STAP problem are shown to perform well in terms of the CSNR and
probability of detection. This work is also reported on in publications 8, 5].
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CHAPTER 1
INTRODUCTION

The theory of space-time adaptive processing (STAP) was pioneered by Brennan and Reed
[9). They showed that the optimal Neyman-Pearson detector for a known signal vector in
colored Gaussian noise with a known covariance matrix is linear, i.e., it consists of a linear
combination of the vector’s components. In practice, the noise (a collective reference to
background noise+clutter+jammers) covariance matrix is typically not known. The common
approach is to estimate it from a secondary data set that does not contain the signal of
interest. In radar, the secondary data may be composed of signals from range cells adjacent
to the one under observation. Reed et. al. suggested the Sample Matrix Inversion (SMI)
method, in which an estimate is substituted for the noise covariance matrix expression in
the linear detector [10]. They developed an expression for the density of the SNR loss with
respect to the optimal case and showed that if the signal vector dimension is N, the number
of samples required to achieve performance within 3 dB of the optimal, is approximately
K = 2N. This convergence has the remarkable property of being independent from the
true noise covariance matrix. Other authors have analyzed the performance of the linear
detector with estimated covariance matrix [11], [12], and [13]. While preserving the linear
architecture of the detector, the SMI detector has a number of drawbacks: (1) it is not
optimal for detection performance, (2) it has slow convergence for large N, (3) it is sensitive
to calibration errors, and (4) it is not CFAR. Subsequent work addressed some of these
concerns. A detector for a signal vector with unknown amplitude and in unknown colored
noise was derived by Kelly from a generalized likelihood ratio (GLR) test [14]. Unfortunately,
the GLR-based detector is more complex and has convergence properties similar to the
SMI detector. The SMI method was shown to be sensitive to calibration errors (15, 16].
Various remedies have been suggested, for example, [17, 18], which reduce sensitivity to
calibration errors at the expense of some added complexity. CFAR modifications of the SMI
detector were suggested and analyzed in [19] and [20]. While deficiencies of the SMI detector
have been addressed on an individual basis, a comprehensive approach for the design of a
linear detector with fast convergence, increased robustness, and CFAR capability, has been
lacking. Most of these desired features can be achieved in the case of STAP radar, by a
linear eigenanalysis-based detector. Such a detector is derived from partitioning the signal
space into interference and noise subspaces and computing a weight vector in the noise
subspace. The interference subspace contains the clutter contributions. Two forms of the
eigenanalysis-based detector have been referred to as the eigencanceler [21, 1] and the PCI
method in [22]. The eigencanceler is a modification of the minimum variance beamformer.
The minimum variance beamformer minimizes the array output subject to a set of linear
constraints [23]. The eigencanceler produces the minimum norm weight vector meeting the
set of linear constraints, and subject to the additional constraint of orthogonality to the
interference subspace [24]. The PCI is derived as a linear detector of data from which the
interference has been removed [22]. In the case of a single steering vector constraint, the
two methods provide similar solutions. In [1] we show that the space-time clutter covariance
matrix for a uniform array and fixed PRF is essentially low rank, due to the inherent
oversampling nature of the STAP architecture. Hence, the space-time radar problem is well
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suited to the application of techniques that take advantage of the low-rank property. The
eigenanalysis-based method has been shown to have a faster convergence rate than the SMI
method. Specifically, it has been shown that the number of samples required for an average
loss of 3 dB with respect to the optimal detector is 2r, where r is the interference space rank
[25, 1]. This finding is particularly significant when r < N, which turns out to be the case
for a typical space-time radar.

In this report, we describe various adaptive radar techniques and discuss their performance
in comparison with reduced rank techniques, mainly the eigencanceler. Our interest in
those methods arises since it has been shown that when the interference is contained within
a subspace of the signal space, and the interference+noise covariance matrix is estimated
from a dataset with limited support, reduced-rank methods actually outperform full-rank
adaptive processing. This is explained by the presence, in addition to thermal noise effects, of
errors resulting from the estimation process. Reduced-rank processing suppresses estimation
errors at the cost of a bias in the SNR. The net effect, however, is a significant performance
improvement for cases when the interference may be modeled as low-rank. Reduced-rank
methods are clearly important for STAP radar, where a large number of degrees of freedom
may be available.

This report is organized as follows: Chapter 2 presents the signal model that will be used
through this work and also presents some background into adaptive processing. Chapter
3 introduces the the Eigencanceler and discusses its weight vector. Chapter 4 has the
derivation of the distribution of the conditioned signal-to-noise ratio (CSNR) for the eigen-
canceler as a performance measure. A performance comparison between the eigencanceler
and full-rank adaptive radar techniques is given in Chapters 5 and 6. The eigencanceler’s
performance is compared with other reduced-rank techniques in Chapter 7. In Chapter 8,
the eigencanceler is applied to high pulse repetition frequency (HPRF) airborne radar.




CHAPTER 2

SIGNAL ENVIRONMENT

In this chapter, the mathematical model for the type of signals addressed in the report
is presented. The optimum and linearly constrained weight vectors are introduced, and
their deficiencies are discussed. The following notation is adopted: boldface lower case
letters denote vectors, boldface upper case letters denote matrices, the superscript H denotes
Hermitian transpose.

2.1 Signal Model
Consider a space-time array with N, antennas uniformly spaced and a N; pulse coherent
pulse interval (CPI) as shown in Figure 2.1. The array is side-looking, i.e., its axis is parallel
to the flight axis. The complex envelope of the signal received at the array from a point

: T
source, is given by the vector s; = (1, . ,e’(N"l)“) , where u is the normalized spatial
frequency given by
2
U= —;dsinﬁ (2.1)

and d, )\, and @ are the inter-element spacing, wavelength and angle of arrival, respectively.
The complex envelope sampled at the first array element is represented by the vector s; =

- T : .
(1, .l ’“1)“) , where v is the normalized Doppler frequency
2v,
= 2.2
V=37 (2.2)

and v, and f, are the radar-target radial velocity and the radar PRF, respectively. The
(N = N,N,)-dimensional target vector is defined

s =

1
——5,0s; (2.3)
VN

where ® denotes the Kronecker product.
Under hypothesis Hy the received signal x consists only of clutter ¢ and noise v contributions:

x=c+v (2.4)

where x is assumed a zero-mean, circularly symmetric complex Gaussian random vector
with covariance matrix R. Under hypothesis Hy, x is given by

x=as+c+V (2.5)

where a is a zero-mean, circularly symmetric complex Gaussian random variable with
variance o7

Since the colored noise (colored noise refers to the aggregate of noise+clutter+
interferences) covariance matrix is usually not known, an estimate is used. The estimate is
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Figure 2.1 Space-time array structure

derived from range cells in the vicinity of the tested range cell and is termed “secondary
data”. The secondary data consists of clutter returns and, possibly, other interferences,
such as jammers. The presence of narrowband jammers does not alter the signal model as
presented. In the sequel, the terms clutter and interference are used interchangeably. The
assumption is that the secondary x;, £ = 1,..., K, data has the same statistical properties
as the tested cell under hypothesis model Hy. The maximum likelihood estimate of the
covariance matrix is given by

ﬁ——l—-zK:xxH (2.6)
| _I{kzl ¢ k, .

2.2 Optimum Radar Signal Processing
The theory of adaptive radar was established in a series of publications by Brennan, Mallett,
and Reed [9], [26]. They showed that if a disturbance is a stationary process, and the
components of the corresponding array vector are distributed jointly Gaussian, then the
likelihood ratio test for detecting the signal in the presence of the disturbance is maximized
by a weighted linear combination of the array outputs using the following weight vector:

w, = kR™'s (2.7)




where k is a gain constant. Equation (2.7) represents the classical Wiener filter. It can be
interpreted as a cascade of a whitening filter for the interference, followed by a matched
filter for the modified (by the whitening operation) useful signal.

The solution in (2.7) requires a-priori knowledge of the space-time correlation matrix R.
In practice we work with a finite segment of data from which R is estimated. In this case
the solution is not optimal anymore, indeed its quality depends on the goodness of the
correlation matrix estimate.

The signal environment can be assumed stationary only over short periods, hence the corre-
lation matrix estimate needs to be continually updated. A number of adaptive procedures
have been advanced over the years for updating the array weight vector. The Howells-
Applebaum loop [27] is an analog implementation of the adaptive filter and it makes use of
the known angle of arrival of the desired signal. The Least Mean Square (LMS) algorithm
[28] is identical from a mathematical viewpoint to the Howell- Applebaum algorithm, but
uses a reference signal rather then a steering vector, hence is less suited to radar problems
and more applicable to communications. Both algorithms are attractive for their simplicity,
but convergence times are dependent on the spread of the eigenvalues of the correlation
matrix. Other methods invariably trade away simplicity for speed. The Direct Inversion
Method (DMI) [10], is fast and independent of eigenvalues, but necessitates order of (M?)
operations per iteration, where M = dim(R), compared to order of (M) operations for the
LMS algorithm. Other adaptive radar approaches are available. For example the sidelobe
canceler can be implemented using the Linear Prediction Method (LPM) [29]. Application
of the Levinson-Durbin algorithm to the LPM problem avoids the matrix inversion [30].
Closely related to (LPM) is the Maximum Entropy Method (MEM) [31].

2.3 The Minimum Variance Beamformer

Often in radar there is the requirement for some control over the beam pattern in addition
to cancelling interferences. This requires the introduction of steering point and velocity
constraints. With the Maximum Likelihood Method (MLM) [32], a filter is designed to pass
a narrowband signal while rejecting all other signals in an optimal manner. This method
is closely related to the Minimum Variance Distortionless Response (MVDR) technique for
spectral estimation. In adaptive beamforming this is known as the Minimum Variance
Beamformer (MVB) [23]. In some cases the steering point constraint is required over a
range of angles and Doppler frequencies. One way to force the beamformer response over
an interval is to prescribe the response at preselected points in space and frequency. The
optimal weight vector is then obtained by solving the linearly constrained minimization
problem [33]:

mgl wHRw subjectto CHw =f (2.8)
where C is the N x J constraint matrix (N = N,N), and f is the response vector. The
weight vector that satisfies (2.8) is given by:

w, = R"IC(CHR™'C)7'f (2.9)




This solution is optimal in the sense that, if the interference can be represented by a
stationary process with known 2-nd order statistics (correlation matrix), then it provides
the minimum output noise power (jammers+clutter+noise) for a constrained desired signal
response.

When applied to practical radar situations, the minimum variance beamformer has a number
of drawbacks which are summarized below:

1. Data Record Size. The minimum variance weight vector is not optimal if the correlation
matrix R is not known. The correlation matrix can be estimated using the relation
given in (2.6). If X is Gaussian then it can be shown that R has a Wishart distribution
[10] and a reasonable estimate can be obtained when the number of snapshots used
in the estimate is at least twice as large as dim [R], i.e., K = 2N. Given an estimate
of R derived from a short data record, it is known that elements ﬁ(z, J) provide poor
estimates for large (¢, j) space-time lags [34]. Consequently, the MVB is deficient for
short data records.

2. Pattern Robustness. It can be shown that the optimal weight vector of the form
w, = kR™'s, can also be written (leaving out constant gain factors) as [35]:

N-1
wo=s- 3 (1-1/X)(as)a; (2.10)

=1

where A;’s are the eigenvalues of R indexed in descending order and normalized to the
smallest eigenvalue Ay. The vector q; is the eigenvector corresponding to A;. Equation
(2.10) indicates that the optimal weight vector consists of weighted eigenvector beams
subtracted from the quiescent weight vector d,. The quiescent weight vector is just
the steering vector to the desired signal which can also be viewed as the matched filter
to a signal at specified angle and frequency. The eigenvector beams subtract from the
quiescent beam to produce nulls in the directions of interferences. From (2.10) it can
be seen that all the eigenvectors affect the sidelobes of the space-time pattern. The
error variance in the pattern is inversely related to the number of samples and to the
true value of the eigenvalues [36], hence, for short data records the fluctuations of the
noise eigenvectors between updates can cause large variations in the array pattern.

3. Computational Complexity. The solution in (2.8) requires a matrix inversion. That
could be a fairly costly operation which requires an order of (N)® multiplications.
Obviously, (N)? could be large even for moderate number of sensors and filter taps.
A number of adaptive procedures have been advanced for on-line computation of the
minimum variance weight vector. Frost’s algorithm [33] is a modification of the LMS
algorithm and, as such, is plagued by the same poor convergence problems. The
Recursive Least Squares (RLS) algorithm exploits the well known matrix inversion
lemma. The RLS converges much faster than the LMS but still requires a data record
length of approximately (2/V) samples [30].




4. Cancellation of Repeater Jammers. The operation of the minimum variance beamformer
derives from the array correlation matrix which represents the mix of interferences
(jammers, clutter, etc.) and thermal noise. The depth of cancellation of any particular
source is reciprocal to its power; stronger interference sources are allocated deeper
nulls. In some cases it may be desired to decouple the null depth from the source’s
power. For example a low power repeater jammer, mimicking the desired signal,
could pass with little attenuation through the array only to be enhanced by the signal
matched filter.




CHAPTER 3

ADAPTIVE RADAR METHODS

The airborne radar problem is two-dimensional with the radar returns a function of both
angle and time. Airborne radars utilize velocity information (contained in the Doppler phase
history) to discriminate between target and clutter. Radars are generally classified into one
of three pulse repetition frequency (PRF) types: low, high, and medium. This classification
is based on the range-Doppler operation. The low PRF radar provides unambiguous range
measurements but, due to low sampling rate, it provides ambiguous Doppler information.
The high PRF radar provides unambiguous Doppler information, but due to the higher
sampling rate, it provides ambiguous range measurements. For many airborne applications
the medium PRF radar, which is ambiguous in both range and Doppler domains, offers the
best compromise solution, [37]. Adaptive space-time processing is particularly important
for medium PRF radars, since it is the only way to simultaneously satisfy the conflicting
demands of low antenna sidelobes for clutter reduction and placement of nulls for directional
interference suppression.

The areas of adaptive nulling, beamforming and spectral estimation are characterized
by similar mathematical models. Hence, it comes as no surprise that some adaptive
nulling methods bear similarities to spectral estimation techniques. The last decade has
seen widespread development of so-called superresolution spectral estimation techniques.
They owe their name to their capability to resolve frequencies beyond the resolution limit
suggested by the data time aperture. Exploiting model similarities, spectral estimation
techniques have been tailored to solve direction finding problems [38], [39], [29]. Eigen-
analysis based methods have seen extensive application to spectral estimation and direction
finding problems. However, few researchers have tried to exploit eigenanalysis for inter-
ference cancelation. The eigencanceler is a new eigenanalysis based technique, motivated by
approaches taken in spectral estimation and direction finding and developed for interference
cancelation.

The eigencanceler provides simultaneous rejection of both clutter and directional inter-
ferences by adaptive processing in the spatial and Doppler domains. The eigencanceler uses
eigendata to suppress clutter and directional interferences while minimizing noise contri-
butions and maintaining specified beam pattern constraints. The method was originally
suggested by the author for suppression of directional narrowband interferences [40], [24].
This chapter extends the eigencanceler to the space-time problem and explores its appli-
cation to airborne radar.

3.1 The Eigencanceler
In this section we present some important properties of the space-time correlation matrix.
We subsequently formulate the optimization criteria for the Eigencanceler, provide the
solutions weight vectors and develop the performance analysis for a simple case.




3.1.1 Eigenstructure of the Correlation Matrix

In the radar problem the desired signal is present only part of the time (corresponding to
the pulses returned from the target). Considerable simplification can be achieved if the
interferences are estimated when the signal is not present. This corresponds to collecting
clutter and jammer data from neighboring range cells. For this case the stacked array vector
x(t) is a superposition of jammer signals j(t), clutter c(t), and thermal noise v(t) only. The
space-time correlation matrix can then be written,

R = E{xxH}
= R;+R.+R,

where Rj, R., R, are the correlation matrices of the jammers, clutter, and noise, respec-
tively. The reasonable assumption is made that the stochastic processes underlying the
clutter echoes, jammer signals, and thermal noise are independent. Our objective is to make
determinations on the eigenstructure of the space-time correlation matrix R. To that end
we will now examine each contributor in more detail.

1. Jammers. Jammer signals can be viewed as sources at discrete angles. In general we
can model jammers to extend over the full range of baseband frequencies, since this
range B, is much smaller than the RF frequency at which the jammer signal originated.
Using a continuous representation rather than the discrete approach in Section II-A,
the jammers correlation matrix can be then written

M, = ; /B Su()d(;, )" (0 ) (3.1)

where the notation emphasizes the dependency of the position vector s on the angle 6; and
Doppler frequency v and Sj;(v) is the power spectral density of the i-th jammer and at
frequency v.

1. Clutter. The clutter extends over a sector of angles ©, and due to the flight geometry
of the airborne radar, it covers a band of Doppler frequencies. The clutter correlation
matrix is given by

Re = /e ‘/B., Sc(0,v)s(8,v)s(8, v)Hsvsh (3.2)

where S¢ (0, v) is the power spectral density of the clutter at angle 8 and at frequency v.

9. Noise. Thermal noise is assumed white across the array and over the frequency band
of interest. Stated another way, sensor outputs are uncorrelated to each other and
uncorrelated to themselves at non-zero time lags. The resulting correlation matrix is
the unity matrix scaled by the noise variance:




R, = o1 (3.3)

It should be noted, however, that when the correlation matrix is estimated from the
data the noise correlation matrix will not necessarily have the form shown in (3.3).

From the foregoing discussion it is evident that, in the airborne radar problem, clutter and
jammer signals may be broadband spatially and temporally. The eigenstructure of the space-
time correlation matrix of such signals has been considered by a number of authors, [41],
[42]. The eigenanalysis of the space-time correlation matrix reveals a few large eigenvalues
and a large number of small eigenvalues. The number of large (principal) eigenvalues is
predicted by the Landau-Pollak theorem. The theorem states that the system energy is
essentially concentrated in its largest » = 2BT + 1 eigenvalues, where B is the bandwidth
covered by the signals received by the array and T is the total durations of those signals
across the array structure. Before evaluating the number of significant eigenvalues for the
space-time array, it is interesting to consider the case of the simple linear space array. The
n-th element output due to a single source at angle # and assuming half wavelength spacing
between elements is given by:

T, = ej27r5i’2‘ f(n-1)

This signal may be regarded as samples of a sinusoid at frequency 0.5sinf. The bandwidth
is essentially zero, hence the number of eigenvalues predicted by the theorem is just one,
which turns out to actually be the case. A continuum of targets between angles 6; and
0, corresponds to a signal with bandwidth B = 0.5 (sin#; —sin @;). The duration across
the array is T = (N, — 1), hence the number of significant eigenvalues for this case is
r = (N;—1)(sinf; —sinf,) + 1. Another interpretation of the number r — 1 = 2BT is
that it represents the number of cycles advanced across the array by the highest frequency
component relative to the lowest frequency component. This number is clearly bounded by
(N — 1). This interpretation is also useful in evaluating the number of significant eigenvalues
for the space-time array. These signals may be viewed as samples of sinusoids of the form

T, = eﬂ”( 28 44)(n-1)

where p = vT, is the Doppler shift between two samples in the tapped delay line structure.
The number of cycles advanced across the array structure is bound by (Ns —1), and the
number of cycles advanced across the tapped delay line structure is (V;, — 1). Hence, the
number of significant eigenvalues of the space-time correlation matrix is bound by:

TSNS-*-Nt—l

This bound is independent of target distribution and is inherent to the way the space-time
structure samples the received signals. This eigenanalysis is substantiated by experimental
data [43]. Simulations of typical eigenspectra resulting from a clutter field and background
noise are shown in Figure 3.1 for three different record sizes: N, 3N, and 10N snapshots.
The curves were obtained using the simulation model described in chapter 2.
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Figure 3.1 Eigenvalues of the space-time covariance matrix

The total power of the jammer and clutter signals in the array is given by:

P = tr[R]

= fil Ai
where ); are the eigenvalues of R. The eigenanalysis suggests that most of the power
is concentrated in the largest r < (N, + N; — 1) eigenvalues. For arrays with r < N,
a small number of eigenvalues contain all the information about interferences (jammers
and clutter). It follows that the span of the eigenvectors associated with these significant
eigenvalues includes all the position vectors that comprise the interference signals (see
(3.1) and (3.2)). For that reason we refer to the dominant eigenvectors, as interference
eigenvectors. The interference eigenvectors span the interference subspace. The rest of the
N — r eigenvectors are referred to as noise eigenvectors. They span the noise subspace,
and are orthogonal to the interference subspace. These properties are summarized as follows:

Property 1. The number of dominant eigenvalues of the space-time correlation matrix is
bound by (N, + Ny —1).

Property 2. The eigenvectors associated with the largest eigenvalues span the same algebraic
subspace as the interference position vectors.

Property 3. The noise eigenvectors are orthogonal to the interference subspace.

11




The eigencanceler exploits those properties of the space-time correlation matrix to construct
a weight vector that is very effective in cancelling the interferences.

3.1.2 Optimization Criteria

Let Q. denote the matrix representation of the interference subspace generated by the
jammers+clutter contributions. The columns of Q, consist of the interference eigenvectors.
Let Q, denote the matrix representation of the noise subspace. The columns of Q, consist
of the noise eigenvectors. Since Q7Q, = 0, any weight vector in the noise subspace, w €
span [Q,), has the property of cancelling interferences. Additional requirements may be
imposed on W to optimize some array performance criterion. Two beamformer formulations
are suggested:

1. The minimum power eigencanceler (MPE) is defined as the solution of the following
optimization problem.

mgl wlRw subject to Qfw =0 and CHw =f (3.4)

With the MPE, the beamformer output power is minimized under the space-frequency
pattern constraints C¥w = f and the additional constraint that the weight vector w
lies in the noise subspace. If the last constraint is removed we revert to the formulation
of the minimum variance beamformer.

2. The minimum norm eigencanceler (MNE) is designed to minimize the norm of the
weight vector while maintaining the linear and eigenvector constraints:

m%ll)'l wHw subject to QFw =0 and Clw=f (3.5)

The solutions to the optimizations in (3.4) and (3.5) are provided in Appendlx A. In
particular, the minimum power eigencanceler is found to be:

1

w, = Q,I,QYC [c7Q,I.Q¥C| f (3.6)

where I', is a diagonal matrix of the reciprocals of the noise eigenvalues.
The minimum norm eigencanceler solution is given by:

= Q.Q7c[c7Q.Qic| 't (3.7)
an alternative expression of the MNE in terms of the dominant eigenvectors can be obtained
by using the identity: Q,QF + Q,Q¥ =L

-@-e@)cler@-ea)d ™t G

A block diagram of the MNE is shown in Figure 3.2. The difference between the weight
vectors of the MNE and the MPE is significant and will by discussed in the next section.
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Figure 3.2 The eigencanceler architecture

Also, note, that for white noise, I', = 1/02 I, and the MPE filter in (3.6) reduces to the
form of the MNE filter in (3.7). In most applications, however, the correlation matrix is
estimated from the data and the noise correlation matrix will be in general different from
a unity matrix.  Since the two types of eigencanceler are suggested as alternatives of the
minimum variance beamformer, it is useful to rewrite the MVB weight vector in (2.9) in
terms of the eigenstructure of R. Using the relation: R!=Q,I,Qf + Q.I'.Qf, where T,
is the diagonal matrix of the reciprocals of the interference eigenvalues, we get:

w, = (QT,Q¥ + Q.[,Q¥)C [C¥(QT.Qf + Q.L.QC]|  f (3.9)

From inspection of (3.9), (3.6), (3.7), or (3.8) the minimum variance beamformer weight
vector is a superposition of vectors in the noise subspace Q., as well as vectors in the
interference subspace Q,, while the MPE and MNE weight vectors lie entirely in the noise
subspace.

An illustrative geometrical interpretation of the MPE/MNE and the MVB is provided in
Figure 3.3. The interference subspace and the noise subspace are represented by orthogonal
planes. The weight vectors terminate on the constraint plane Q2. The main difference is that
w,/ W, is orthogonal to the interference subspace, while w, is not.

3.1.3 Steady State Analysis
For the steady state analysis of the Eigencanceler’s performance we consider the simple case
of a single point jammer interference characterized by a stacked position vector sj. A single
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Figure 3.3 Geometrical interpretation

linear constraint s¥w = 1 is imposed. The space-time correlation matrix for this case is
R = Pysysfl + 02 (3.10)

where P is the jammer power. In this ideal case the MPE and MNE provide identical weight
vectors and the interference subspace is spanned by the single vector s;. Direct substitution
of Q, = sy, and the unity gain constraint in (3.8) or (3.6) yields the eigencanceler weight
vector:

1
- 2
1= lpll
where p = s¥s. To calculate the minimum variance weight vector, R is inverted using the
matrix inversion lemma:

W, (I — sjs_}?) Ss (3.11)

R = ;1; (I - 7st§’) (3.12)

where v = (P;/02)/(1+ P;/o2). Direct substitution of this result and the linear constraint,
in (2.8) yields
1

— 1=l
H

W, (I - 'stSSI) s (3.13)

The interference gain is defined g; = w¥s;s¥w. While the eigencanceler has null response
to the interference, the MVB interference gain is: '

g = ”P”2(1 — 7)2 (314)

(1 —llnl?)?
Clearly when the jammer and desired signal position vectors are not orthogonal p # 0 and

gs > 0, i.e. some interference is let in by the MVB. When P; > 02, v — 1, and the gain
g5y — 0.
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Another merit figure of interest is the interference+noise output power, Prn = wHRw.
For the eigencanceler we have:
PI+N,e = Wfljvwe
[

1~|loll

and for the MVB:
PI+N,o = ngwo
[+
= 1l

Since 0 < v < 1, the total undesired power at the output of the eigencanceler is larger than
for the MVB. This is hardly surprising since the MVB minimizes output power under a single
linear constraint, while the eigencanceler minimizes output power with an extra constraint
(orthogonality to interference subspace). The complete cancelation of the interference by
the eigencanceler is traded off by the higher weight vector gain which, in turn, introduces
more noise. However, we will show that this is not the case when the correlation matrix is

estimated from the data.

3.1.4 Perturbation Analysis

When the correlation matrix is estimated from a finite number of snapshots the measurement
noise causes perturbations in the values of the weight vectors. This perturbations affect
differently the MVB, MPE and MNE weight vectors. The effect of perturbations on the
eigenvalues and eigenvectors of the correlation matrix has been studied in [44] and [45]. The
estimated correlation matrix can be written as

R=R+ AR

where AR is a perturbation due to the measurement noise. Assuming a single linear
constraint, the estimated MVB weight vector is given by:

W, = ¢,R7!s (3.15)

where ¢, is the scaling factor required to meet the constraint. For the MVB method it can

be shown [46] that
1

2y .
Eho_K (3.16)
where E {72} = E{||AW(,||2 / ||wo||2} is the normalized MVB weight vector norm variance
and Aw, = W, —W,. K is the number of snapshots used in the estimation of the correlation
matrix R. This result holds for large K.

The minimum norm eigencanceler weight vector for the case of a single interference source

and single linear constraint is given by: '
R, =c [I-@al]s (3.17)

where ¢, is a fixed scalar and @ is the eigenvector associated with the largest eigenvalue A1
It can be shown that for this case the error variance is given by [46]:

1 Amin (R)

Ko (R) ®) (3.18)

E{fyf ~
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where E {72} = E{||Awe|[ / |well } Aw, = W, — W,, and W, is the MNE weight vector

obtained from the eigendecomposition of the estimated correlation matrix R. Comparison
of the error variances for the minimum variance beamformer and the minimum norm Eigen-
canceler, expressions (3.16) and (3.18) respectively, reveals a much lower variance for the
Eigencanceler. This robustness explains the superior performance exhibited by the Eigen-
canceler.

An estimate of the error variance for the minimum power Eigencanceler, a single interference
source and a single linear constraint, can be obtained by rewriting (3.6) as

W, = ¢ [ﬁ_l AT qlq1 ] (3.19)

Using (3.15) and (3.17) with (3.19), we can write W, as a linear combination of the MVB
and MNE weight vectors:
W, =W, — oW, + €38

The MPE weight vector sensitivity to perturbations is consequently controlled by W, and
does not posses the robustness shown by the MNE method. The simulations presented in

the next section substantiate the results of the perturbation analysis by showing that the
MNE is superior in performance to the MVB and MPE.

3.2 Simulations
For programming convenience we considered a linear uniform array with N, = 8 elements,
spaced at half wavelength. Each array channel consisted of an FIR filter with V; = 8
taps. The sampling frequency was normalized to 1. The radar waveform was assumed
narrowband, i.e. effectively constant over the propagation time across the array. We
considered a forward looking airborne radar with a normalized platform velocity of 0.4.
Hence ground clutter at boresight appears approaching at relative velocity 0.4. Radial
velocities of other clutter returns depend on their azimuth angle. The clutter was assumed
to extend over the angular sector -60 to +60 degrees. The clutter returns were simulated by
spreading at random 60 scatterers in this angular sector. The clutter echoes were modeled
as independent random variables, drawn from a random complex Gaussian distribution,
with zero mean, and variance determined by the clutter-to-noise (CNR) parameter. We
assumed the clutter sources uncorrelated to each other and uncorrelated between snapshots.
Each clutter scatterer at each snapshot was assumed coherent across the array sensors and
across the filter taps. The CNR was calculated from the contribution of all clutter echoes.
Note that clutter signals extend over intervals in both the frequency and spatial domains.
The simulation also included two jammer signals. Both were modeled with a relative radial
velocity of 0.8. One jammer was placed at 30 degrees and the other at 35 degrees, and
their power was 10 and 20 dB above the noise level, respectively. For simplicity we modeled
the jammers as sinusoids at carrier frequency. For all simulations, the array was steered
at boresight, and the array weight vector was constrained to unity gain over the Doppler
frequency sector [0.7,0.9]. The sample correlation matrix was calculated using (2.6). The
various weight vectors were computed using relations (2.9), (3.6), and (3.8), respectively.
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Figure 3.4 Spatial patterns. K = 10N.

The results are grouped according to the number of samples K, used to estimate the corre-
lation matrix R. We looked at two illustrative cases: a large data record (K = 10N), and
the smallest record for which R is still full rank, (K = N). From Figure 3.1 it is seen that
for the large data record the eigenspectra approaches that of the ideal correlation matrix
(all noise eigenvalues are of equal size). For the small record, larger variations are observed
in the spread of the noise eigenvalues.

Large Record (K = 10N): Figure 3.4 provides the adapted antenna patterns for the
MNE, MPE and MVB cancelers, respectively, for a sample run based on 10N samples.
The azimuth patterns have been calculated for Doppler frequency 0.8 (the center Doppler
frequency of the jammers) and are indicative of the array’s capability to cancel jammers.
All cancelers place accurate nulls (jammers’ azimuth shown by the vertical dashed lines).
However, it can be observed that the minimum variance beamformer (MVB) and the
minimum power eigencanceler (MPE) have a distorted sidelobe structure and a slightly
biased mainbeam. For this large data record, the sample correlation matrix is close to the
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Figure 3.5 Frequency response patterns. K = 10N.

true correlation matrix, and for high interference-to-noise ratios the differences between
the three cancelers are not significant. In Figure 3.5 the MNE and MPE exhibit identical
frequency response patterns (taken at zero look angle). The frequency response pattern
indicates the clutter rejection performance with a notch being placed at the frequency where
the clutter peaks. Significant differences among the methods become apparent for short
data records. ,

Short Record (K = N): For this case we show three angular and frequency patterns for
each method resulting from three different runs. In Figure 3.6 the patterns for the MVB and
the MPE methods are distorted. ~ Note that the sidelobes are higher than the mainlobe.
Yet, the MNE still manages to provide repeatable useful performance, with accurate nulls,
low sidelobes, and a mainbeam. In Figure 3.7 it is shown that the MNE places a deeper
null for clutter cancelation than any of the other methods. Again high sidelobes and
fluctuating MPE and MVB patterns are evident. In Figure 3.8 we plot the clutter+noise
improvement factor for the three methods and various input clutter-to-noise ratios. The
MPE is indistinguishable from the MVB. The improvement factor for the minimum norm
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Figure 3.6 Spatial patterns. K = N.

19




GAIN dB

MIN NORM EIGENCANCELER

0 0.5 1
NORMALIZED FREQUENCY
MIN POWER EIGENCANCELER

0.5 1
NORMALIZED FREQUENCY

MIN VAR BEAMFORMER

GAIN dB

0.5 1
NORMALIZED FREQUENCY

# snapshots I=NK
v_a_norm=0.4
CNR=20

Figure 3.7 Frequency response patterns. K = N.

20




CLUTTER IMPROVEMENT FACTOR dB

! 1

! ! 1
5 10 15 20 25 30 35 40
CLUTTER-TO-NOISE RATIO (dB)

Figure 3.8 Improvement factors vs. CNR. K = N.

21




(a) JAMMERS+CLUTTER FIELD (b) MIN NORM EIG PATTERN

1.
100,
80
604
40\
20\
-50
10\ ) .
54 / ' )
/] ‘
A\ "N N\ \‘/ \
‘ A \4\ /RN i\\ N\

Figure 3.9 3D plots of the received signal and space-time patterns. K = N. Notice the
“notch” in Figure (b) corresponding to the clutter “ridge” in (a).

eigencanceler shows a 5 to 10 dB improvement over the minimum variance beamformer.
Figure 3.9 provides 3D plots of the received signals intensities (clutter and jammers) as well
as the space-time patterns for each of the beamformers. The MNE clearly has the most
useful pattern.

The simulation results presented in this section illustrate the robustness of the minimum
norm eigencanceler method and its superior performance to the minimum variance
beamformer.

3.3 Discussion
In this chapter we suggested a new approach, termed the eigencanceler, as an alternative
method for adaptive radar processing. Two types of eigencanceler have been considered: the
minimum power eigencanceler and the minimum norm eigencanceler. Each eigencanceler
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has been formulated as a constrained optimization problem. To evaluate their performance,
these methods were compared to the conventional minimum variance beamformer. Our
analysis and simulations indicate that the minimum norm eigencanceler is a very promising
alternative to the minimum variance beamformer. Particularly for short data records, the
MNE provides superior clutter and jammers cancelation, lower variations in the pattern,
lower distortion of the mainbeam, and can be carried out at a smaller computational cost
than the MVB. Unlike the minimum norm eigencanceler, the minimum power eigencanceler
has been shown to have properties similar to the conventional beamformer. The superior
performance of the MNE is traced to the fact that the MNE uses only dominant eigenvectors
in the formation of the weight vector, while the MPE and MVB use small noisy eigenvectors
as well.
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CHAPTER 4

ASYMPTOTIC DISTRIBUTION OF THE CONDITIONAL
SIGNAL-TO-NOISE RATIO

Reed et al. suggested the use of the maximum likelihood estimate of the covariance matrix
in lieu of the true covariance matrix, to detect a known signal vector in unknown colored
noise [10]. This method is the SMI. While not optimal in any sense, this procedure has the
advantage of being implemented as a simple linear combination of the array inputs.

The loss incurred by the estimation of the unknown colored noise can be evaluated from
the conditioned signal-to-noise ratio (CSNR). The CSNR is defined as the ratio of the SNR
achieved by the adaptive filter derived from the available data, to the optimal SNR (when
the true data covariance matrix is available). As the data has a statistical model, the
CSNR is a random variable. Reed et al. [10] determined its distribution, and used it to
analyze the performance of the SMI method. This distribution turned out to have the
remarkable property of being independent of the actual covariance matrix. In particular,
they showed that if the signal vector dimension is N, the number of samples required to
achieve performance within 3 dB of the optimal (i.e., when the true covariance matrix is
known) is approximately K = 2N. Other authors provided alternative proofs or extended
the SMI analysis [11], [12], and [13].

When the colored noise can be modeled as the aggregate of an interference with a low-rank
covariance matrix and white noise, eigenanalysis can be exploited to design a detector with
faster convergence than SMI. The detector is derived from the interference subspace and
has been referred to as the eigencanceler [1]. The eigencanceler is formulated as a modified
minimum variance beamformer. A related approach is the PCI method derived from a low-
rank approximation to the data matrix [22]. The minimum variance beamformer minimizes
the array output subject to a set of linear constraints [23]. The eigencanceler produces
the minimum norm weight vector meeting the set of linear constraints, and the additional
constraint of orthogonality to the interference subspace [24]. In the special case of a single
linear constraint, the eigencanceler and PCI provide the same solution.

An expression for the probability density of the CSNR for the PCI method has been derived
in [25]. It is shown therein that this probability density is the same as the probability density
for the SMI method, except that the parameter (r + 1), where r is the interference subspace
rank, is substituted for the signal dimensionality. It results that the method converges within
3 dB of optimal for K ~ 2r.

In this chapter, we suggest a new approach resulting in a different expression for the proba-
bility density of the CSNR for the eigenanalysis-based detector. The new probability density
is derived from the asymptotic properties of the eigenvectors of the estimated covariance
matrix. It is shown that, unlike the SMI method and the result in [25], the probability
density depends on the true covariance matrix. Two simpler approximations, independent
of the covariance matrix, are derived for a large interference-to-noise ratio. While not similar
in form, these approximations produce numerical results close to those obtained using the
probability density in [25]. It is hoped that the asymptotic analysis presented in this chapter
provides new insights into the properties of reduced-rank methods.
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4.1 Distribution of the CSNR
Under both hypothesis models given in chapter 2, X is a zero-mean, N x 1 complex-valued
normal random vector with the N x N covariance matrix R, ¢ = 0,1, where Rp = R and
R; = o2ss¥ + R, and the superscript stands for complex transposition. A distribution so
defined is denoted x ~A” (0, R;). The matrix R is further assumed to obey the model

R = Q:A:1Qf +07Q:Q7, (4.1)

where Q; is the N x r matrix of principal eigenvectors, A; is the 7 X 7 diagonal matrix of
principal eigenvalues, o2 is the variance of the white noise, and Q; is the N X p matrix of
noise eigenvectors, where p = N — r. The principal and noise eigenvectors are said to span
the interference and noise subspaces, respectively. The eigencanceler weight vector for the
case of a single steering vector linear constraint is given by [24, 1]:

w o= (IN—Q{Q{’)S
= Q,QHs, (4.2)

where Iy is the N x N unit matrix, 61 and 62 are the respective interference and noise
subspaces in the spectral decomposition of the estimated covariance matrix, R = Q:A;QF +

—

Q2K2§§I . The estimate R is computed from a set of K independent interference N x 1

snapshot vectors Xz, k = 1,..., K, sometimes referred to as secondary data [10]:
-~ 1 &
R=>) xixf. (4.3)
K k=1

In this chapter we exploit some asymptotic properties of R. Statisticians often make use of
asymptotic analysis [47, 48], but this approach has found applications in signal processing
as well [44, 45]. In reference [48], Gupta establishes that the asymptotic distribution of

B = VK [ﬁ - R] is normal as a direct result of the central limit theorem. We use the
normality of B to prove the following result.

Lemma 1: Let R = %Efﬂ xxxH . where x are assumed to be zero-mean, circularly
symmetric N-dimensional random vectors, i.i.d. with N (0,R) distribution. Then the

e~

limiting distribution of B = VK [R — R] , as K — oo, has zero-means and covariances

E [bi;by,] = 0uo;;

jm?

(4.4)

where o, are the elements of the matrix R, and the Hermitian property of R implies
that o; = o7..

Proof: Let z; (k) be the i-th component, i = 1,..., N, of the snapshot vector x;. From
the definition of oy;, F [:1:,- (k) z} (k)] = 0;;. The expected value of the product of
four zero-mean Gaussian random variables is given by (for example [45, p.381]):

E [w: (k) } (k) 7 (k) 2m (F)] = 0405 + 01O}m- (4.5)
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It results that

E [b;;b7,,]

KE [(% k}; zi (k) 25 (k) - a,-j) (11—( k}; 27 (k) &m (k) — fffm)]
= ouol. (4.6)

In this section, the probability density of the CSNR is developed. The CSNR is the SNR
obtained by the application of a specified weight vector w, normalized by the SNR of the
optimal case [10]:

IWHSI2 1 e
P~ WHRwsFR-1s’ (4.7)
Clearly, the CSNR is bounded, 0 < p < 1. Substituting (4.2) in (4.7) we obtain
o \2
sfl Hs
(s"Q.Qf's) 1 “8)

"7 STQQIRQ,QFs TR TS
for the eigencanceler. Our goal is to characterize the CSNR in (4.8) statistically. The

perturbation analysis of the noise subspace 62 is required before the characterization of p
can proceed.

4.1.1 Perturbation Analysis of the Noise Subspace

The objective is to develop an expression for the estimated noise subspace 62, in terms of the
interference and noise subspaces of the true covariance matrix. The spectral decompositions
of the true and estimated covariance matrices are

R = QAQF (4.9)

and

R = QAQ". © (4.10)
respectively. Let the notation Q ={¢;;} denote the matrix Q with elements ¢;;. For
uniqueness, Q = {¢;;} and Q= {Gi;} are selected such that g¢i;, g; > 0. Assume that the
covariance matrix is estimated using relation (4.3).
Define the N x N matrix

A = QPRQ. | (4.11)

This matrix represents perturbed eigenvalues and is in general complex-valued. The pertur-
bation from the true eigenvalues is given by

U=VK(A-A). (4.12)
The following theorem is formulated for the asymptotic distribution of the elements of U:
Theorem 1. The limiting distribution 6f U is normal with zero-mean and covariance
E [uijul,] = Xiribubim, (4.13)

where ); is an element of A, and §;,, is the Kronecker delta.
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Proof: The pfoof follows from Lemma 1 applied to the vectors z; = QFx; and the
normality of the limiting distribution of the matrix B. From (4.11) and (4.12)

and with B = VK [ﬁ — R], the matrix U can be expressed as
| U =Q7BQ. (4.14)

The normality of the limiting distribution of B is maintained through the linear
transformation Q, hence the limiting distribution of U is normal as well. Applying
the Lemma 1, we have E [u;ju},,] = pift},,, where pn is an element of QRQ =
A. But A is a non-negative diagonal matrix of the eigenvalues of R, hence we
have pg = Xibiy and 15, = Aj6jm. Q.E.D.

Define the N x N matrix Y = QF 6 Since both Q and a are unitary, so is Y. The
perturbed eigenvectors can be expressed Q = QY. From the definition of Y and (4.11) we

have A = QFRQ = QHOAQ Q = YAY". Define
V=vK (Y -1Iy), (4.15)

then Y = In+ \/I—K—V. From A = YIA&YH, the previous relation and (4.12), A can be written:

A = A+—1—U

VK

1

- o))

1 1 1\
(1v+ ) (24 22) (3v+ 75Y)
1

= A (VA+D+AVY) +M, (4.16)
where D=vVE (A—A) and M= % (VD +DV7 +VAV?) + {4z VDV In the
following we make use of the notation o(1/K). The notation M = o(1/K) is defined
as limg ..o Pr[M < (1/K)H (K)] = 1, where the inequality is component-wise and H (K)
is bounded as K — oo. Note that according to this definition V, A, and D are o(1), i.e.,
bounded as K — oo. Also note that the calculus of o(1/K) implies that if A and B are
0(1/K), so is A 4+ B. Using the o(1/K) notion, we can define the symbol = to denote
equality to the 1/K order, i.e., A = B implies that A — B = 0(1/K). The matrix M in
(4.16) is 0 (1/K) . If we neglect M in the equation, the resulting equality holds to order 1/K
accuracy. A term by term comparison of the first and last lines in (4.16) yields:

U=VA+D+AVH, (4.17)

where the symbol = is used for asymptotic approximation.
According to the model assumed in (4.1), the N x N matrix of eigenvalues A can be parti-

tioned
A=(31 0 ) (4.18)

2
av IP
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Similarly, the N X N matrix V is partitioned into the following matrices: r xr Vy1, 7 Xp Vi3,
PXrT Vo, pXpVyy

Vi Vi
V = . 4.19
( Vo Vi ) (4.19)
Thus, if the elements of V are denoted, vij,1.e., V = {v;;},_, o then Vio={v;}, ., .
Let the matrix U be partitioned in a 31m11ar way. We have from "(4.17), (4.18), and (4.19),
and noting that D = VK (A A) is a diagonal matrix,
U12 = 0'12)V12+A1V£{1. (420)
To proceed, we show that Vy,4+VE = 0. Partition Y in a fashion similar to V, i.e.
Y = Yu Yu with Y13 7 x 7, Y12 7 X p, etc. It follows from relation (4.15) that
Yo Yy
I, A% \%
Y_( + 7k Vu 7_ 5 ) (4.21)
7—Vzl ngn
Using the unitary property of the matrix Y and the relation above, we have
L = YaYE+ Y YL
lv VE 4 (14 v L+ ——V B (4.22)
K 21V 12 D \/E 22 D \/7{: 22 . .
From the last relation it follows that
1 1 " 1
— —= = IL,-=V,Vvi
(Ip + \/RV22) (Ip + \/’RV22) '4 K 21 VY2
> T, (4.23)
From the unitary property of Y we also have
0 = Yu Y +Y,YE
1 1
= ﬁ (Vlz + V,ﬁ) + Vi (V11V§{ + Vlzvrfz)
~ 1 H
= TR (V12 + V21) ) (4.24)

where 0(1/K) terms were neglected to obtain the last relation. Using V15 & —V in (4.20)
we obtain: .
V12 = — (A1 - 0'12,1»,-) U12. (425)

"The next theorem establishes the asymptotic distribution of the components of Vis.

Theorem 2. The limiting distribution of the r x p matrix Vi, is normal with zero-mean

and
py 0'

(N — o2)”
noand Vip={v;}i=1,...,rj=r+1,...,N.

E [vijv;‘m] - 6116]m, (426)

where V = {v;;}.

1=1,...,Nj=1,..
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Proof: A term by term listing of (4.25) yields
Uiy
)\i - 0'12,’

fori=1,...,rand j =r+1,...,N. Therefore,

(4.27)

Vi; = —

E [uijuim]
(N —o2)
/\,‘0‘12,

The last relation was obtained applying Theorem 1. Q.E.D.

E [vi;0},,]

A consequence of Theorem 2 is that the elements of V7, are asymptotically independent.
The columns of the matrices Q and Q are the eigenvectors of R and R respectively. Define
the N x r matrix Q; and the N X p, (r + p = N) matrix Qz such that Q = [Q, | Q2.
Note that Q; and Q, are orthogonal, i.e., Q¥ Q, = 0. The matrix Q is partitioned similarly,
Q= [Ql | Q2] . From the relations above, and from Q = QY and (4.15), we find that

—

Q: = QY +Q:Y2
1 1
= Q (Ip + —\/?sz) + 7—-[?

Note that Qz( + \/I—,ng) and Q; are orthogonal, i.e., (I + \/EV22) QY Q, = 0. The

last expression provides the perturbation analysis of the estimated noise subspace Q, in
terms of the true noise and interference subspaces, Q; and Qy, respectively. This relation
is used to derive the probability density of the conditioned SNR.

Qi Vi (4.29)

4.1.2 Computation of the PDF

Define the transformed noise subspace, the N x p matrix C = R!/2Q,, where the square root
is defined such that R!/2R1/2 = R. Starting from the definition of the CSNR p, substituting
R-1/2C =Q,, and defining the transformed steering vector a = R™*/%s, we get

("Q.0fs)° 1
Q,Qf RQ, Qs PR s
( HR-1/2CCHR-/%g )2 1
sHR—l/zccHCCHR—llzs sHR—ls
(afccH ) 1
aHCcCcHccHaafa’

Substituting the unit magnitude vector b = a/ |a| for a above and letting z = CHb yields

(4.30)

H 2
p = Z_SIZ.C_?@ (4.31)

29




Using the relation RY/? = QlA}ﬂQ{I +0,Q:Q¥, (4.29), and the orthogonality between Q
and Q, we get

1 1 1/2
C=o, I+ —=Va |+ —=Q1A{ V.. 4.32
Q2 ( P \/j’? 22) \/‘—[?Ql 1 12 ( )
Expand the term z using (4.32) and the orthogonality relations Q¥ Q, = I, and QY Q,; = 0:
1 " 1
1
Z =0, (Ip + 7_[_(V22) ng + ﬁVﬁAlﬂQ{Ib. (4.33)

We make the assumption that the projection of the steering vector on the true interference
subspace is negligible with respect to its projection on the true noise subspace, i.e., IQ{I si <

le s|. This assumption is reasonable and is just an expression of the requirement that

the interference be received in the sidelobe region. Mainlobe interference is not addressed
here. From the definition of vectors a and b we have: IQ{ISI = IQ{IRl/2a| =|a| lA}ﬂQflb’ >

|al

0, Q¥ b', where the last inequality follows from the observation that o, is smaller than any
element of A}/%. Likewise, |Qfs’ = |a] UUbeI. Since, |a| an{Ibl < |Q{{S| < |Q§Is‘ =
c,Qb|, it follows that IQ{IbI < lQ2Hb| . The vector b has unity length, hence 1 =
bb = b¥ (Q,Qf + Q:Q) b implies that

|al

b7Q,Qfb =1. (4.34)

With this result, and using (4.23), we have

zz 2 o2bFQ, (Ip + VII?V22) (Ip + VII?ng)H Qb= 02, and the numerator of (7.17)
becomes

(2" z)2 > gt (4.35)
To evaluate the denominator, first compute the p x p matrix C#C. From (4.32) and (4.23):
1 " 1 1
cfic = of ((Ip + ﬁvzz) QY Q. (Ip + —\/7—(-\’22) + Ea;sz’zAqu)
> g2 (I,, + -Ilza,,-?V{gAqu) : (4.36)

As a result, the denominator of (7.17) is evaluated:

K"
1

g O’ZZHZ+'R-ZHV{£A1V1QZ

1

K

where we made use of the relation z9z & o2 (from (4.35)). Using (4.33) in (4.37) and
neglecting terms o (1 J K3/ 2) and higher, the term %ZH VI A, V92 is asymptotically equal

ZHCHCz = o2gf (I,, + ia-2vng1V12) z

~ o4+ —zVEA,V,,z, (4.37)
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to %aﬁbHnggAlebe. Thus we have

zZHCHCz 2 ol + tHV12A1V12t (4.38)
where t —angb and tHt = o2 (see (4.34)). Write the r x p matrix V12 in terms of its
H
v1
rows: Vig = {vij};ioy  icrg1,. N . Then the following expression is obtained:
/\1V{It
A vt
It follows that the CSNR can be written as
_ 1
p = 1+O'—41tHV A1V12t
1
- : 4.40
14 %(¢ (4.40)

2
where from (4.39), ( = o7 #HVEA Vst =04 Y1, . From Theorem 2, the terms

vt in the previous relation are complex Gaussian random variables, with £ [VH t} = 0 and

variance F [ ] =t7E [v, ] t. To find an expression for the variance, we first evaluate

the p x p covariance matrix £ [vi H ]:

v177‘+lv‘;‘,1‘+1 M vi,r+1v:’N
E [vivfH ] = F :
Vi, NV 41 Vi, NV N
)\,'0'3
= o 44y
where the last relation is a direct consequence of Theorem 2. Using this relation we obtain
2 o2
E [|v{ft| ] = D% Ay
(A —a?)
by
~ 4 U
S 4.42
v (Az’ _ a_v)2 ? » ( )

where we used tft 2252 Next we obtain the probability density of the Hermitian form
pi = vEttHv,. Accordmg to a lemma by Goodman [49], the characteristic function (c.f.) of
the variate y; with respect to the density of v; is given by

1

o, (0) = . i=1,...,m 4.43
w0 =45 (I, — jOZttH) (4.43)
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where ¥; = E [v1 } From (4.42), ; = A\io?/ (A — 02)* L. The determinant in the relation
above can be computed by recognizing that the p x p matrix (I — o3t ) is the sum of an

identity matrix and the rank-one matrix j0X;tt¥ = ]0)\ 02/( ) tt¥. The only non-
zero eigenvalue of the rank-one matrix is j0X;02/ (A — 02)* tHt = ]0)\ o2/ (A — 2)*. Conse-
quently, the matrix (Ip - jBEittH) has an eigenvalue equal to (1 — 70N (N — av)z) and
(p — 1) unit eigenvalues. It follows that det (Ip — jOE,-ttH) =1—j0\od/ (N — a'f,)2 . From
the last relation and (4.43) it follows that the c.f. of y; is given by

P, (0) = (1 - jmf) ™", (4.44)

where ; = Mot/ (A — 02)®. This c.f. is that of an exponential random variable (also a
non-normed chi-square variate with 2 degrees of freedom) and with mean E [y;] = F;. The
variate ¥; = o, *\;u; then has an exponential distribution with mean

2

7i=E ] =N/ (\—0?). (4.45)

The random variable ¢ in (4.40) can now be written

C = XT: Vi. (4.46)

=1

The statistical independence of the v; variates follows from Theorem 2 and the independence
of the vectors v;. Consequently, the c.f. of ¢ is given by

o.(6) = H«b (6)

= 1:[ (1—j7:6)7". (4.47)

The product appearing in the expression of the c.f. can be converted to a sum by applying
the following partial fraction expansion:

s 1 T T
: = —_— 4.48
i];]l:l—jﬁ,'e ;1—]'77,'0’ ( )
where m; = Tl ;2 7:i/ (7; — ¥i), [50]. The inverse Fourier transform of the c.f. ®.(6)

yields the density of the random variable ¢ in the form of a sum of exponential densities
weighted by the factors 7;:

fQ) = Zm L (> (4.49)

=1 "t

It follows that the density of the CSNR p = (1 + (1/K) {)™" is given by the expression

T ~K(1_—
f(p)=Kp~ 22:7—’_exp (—(:"—-—)), 0<p<l. (4.50)

32




4.1.3 Discussion

The expression for the CSNR probability density in (4.50) merits further consideration. It is
observed that the probability density depends on the number of samples K, the number of
dominant modes r, and the eigenvalues of the true covariance matrix (through the quantities
;. Since the sum of the eigenvalues equals the total power in the received signal (inter-
ference+noise), it follows that the probability density is parameterized by the interference-
to-noise ratio (INR). This result is different in form, as well as in substance, from the
distribution of the SMI method in [10]. That expression, provided below for reference, is
that of a beta distribution and is independent of the covariance matrix:

£ = s —nraeas = - T (.51)

where T' (K + 1) = K! is the gamma function. Another interesting comparison is with the
density of the PCI method in [25]. As mentioned in the introduction, the eigencanceler and
the PCI method of reference [22] provide the same weight vector in the case of a single linear
constraint. The density of PCI’s CSNR is similar in form to that of the SMI method, with
the difference that in (4.51) the signal dimensionality N is replaced by the quantity (r + 1),
[25], i.e.,
I'(K +1)
F o) = For®E +1 =0

Like SMD’s density, this density is independent of the covariance matrix and the CNR. An
additional difference between the densities of (4.50) and (4.51) is the asymptotic nature
of the former. A closer look at expressions where the asymptotic approximation is applied
(such as (4.16)) reveals that the nature of the approximation is to neglect o (1 VK ) terms
relative to o (1) terms. However, this expression is later squared ((4.40)), thus the asymptotic
approximation implies neglecting terms o (1/ K) terms relative to o (1). To achieve an order of
magnitude ratio between the terms, the number of samples in data set needs to meet K > 10.
Thus a modest number of samples is sufficient to satisfy the asymptotic approximation.
Further analysis of the newly developed probability density, as well as comparisons with other
densities and an assessment of the effect of the asymptotic approximations, are provided in
the numerical results section.

(1—p) 7 pF . (4.52)

4.1.4 Approximation for Large INR

An approximation to the expression in (4.50) can be obtained for the case of a large
interference-to-noise ratio, A; > o2. Earlier in this section it was shown that the quantity p;
is an exponential variate (see (4.44)). For X; > o2, we have i; = Xioy/ (A — o2)? ~ o/ .
It follows that T; = o;*\E; = 1. Then from (4.46), { is the sum of r i.i.d., unit-mean,
exponential variates; i.e., ¢ has a gamma distribution with parameters r and 1. The density
of ( is then given by

f)= iﬁ%C"le", ¢=0. (4.53)

33




Using this density in conjunction with the relation between the variates p and { in (4.40)
yields the density for the CSNR in the case of large INR:

I{TeK -K/ =1 —( +1)
flp)= 7= /P (1=p) " p", 0<p<1L (4.54)

I'(r)
It should be noted that as A;/o2 — 0o, (4.50) — (4.54).
A further simplification can be obtained by keeping only the first two terms of the series

-1 i
(1+4¢) =T (~¢/K)":

1 1
= =1 - —C(. 4.55

The last formulation does not strictly guarantee that 0 < p. However, since E [(] = r and
var [(] = (27‘)2, then for K > r, p is almost certain to be non-negative. The density of the
CSNR is obtained from (4.53) and (4.55):

e—K(l—-p) (1 _ p)'r—l

o) = . 0<p<l. (4.56)

I'(r)
It should be noted that with the large INR approximation, the dependency on INR is not
present in either (4.54) or (4.56). Finally, we note that if we define the CSNR loss, v = 1—p,
then it follows that the probability density of the loss is given by the gamma function with
parameters r and K:
K’ —K«v_r-1
f()=T(rK)= T T, 0L (4.57)

The CSNR loss is thus distributed as the incomplete gamma function.

4.2 Numerical Results
Computer simulations were conducted to support the theory presented in the previous
section. The simulation scenario consisted of distributed clutter, white Gaussian noise,
and a space-time array. The clutter consisted of 120 point sources randomly distributed in
the angular sector 0 - 20 degrees with respect to the array boresight. The array boresight
was assumed perpendicular to the platform motion. The clutter signals were summed non-
coherently to form the signal received at the array. The space-time processor was fed by an
N, = 8 element linear array with NV; = 4 tap delay lines at each element, resulting in a signal
space dimensionality of N = N;N; = 32. The steering vector was pointed at 50 degrees and a
normalized Doppler frequency of 0.4.- The clutter map in angle-Doppler coordinates is shown -
in Figure 4.1.  For this scenario, the interference subspace was found to have rank r = 4.
The space-time covariance matrix was estimated from a specified number of snapshots of
those signals ((4.3)), and weight vectors were derived for SMI and eigencanceler processors
((4.2) for the latter). The CSNR was then evaluated from (4.7). Maintaining the same
scenario, the process was then repeated numerous times to yield independent realizations of
the CSNR variate. The numerical results were compared to the theory as described below.
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Figure 4.1 Simulation clutter map. The vertical line indicates the steering vector.
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# snapshots = 2*N
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Figure 4.2 The mean conditioned signal to noise ratio as a function of the clutter to noise
ratio for covariance matrix estimates using K = 2N samples.
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Figure 4.2 plots the mean CSNR for different clutter-to-noise ratios (CNR). The covariance
matrix was estimated from K = 2N = 2N, N, = 64 snapshots.  For each CNR, the mean
was computed from 100 runs. The simulation results are shown together with values of E [p]
computed using numerical integration of the following densities: for the SMI, (4.51), and for
the eigencanceler, (4.50), (4.54), and (4.56). Also shown are results obtained using the PCI
density, (4.52). For this case (single linear constraint embodied by the steering vector), the
PCI and eigencanceler methods produce the same weight vectors, and thus the same CSNR
p. The objective is to evaluate the accuracy of the four probability density expressions for
eigenanalysis-based processing ((4.50), (4.54), (4.56) and the PCI density). From the figure
it can be seen that for CNR > 20 dB, all four expressions provide a good representation of
the data. The approximation in (4.56) and the PCI method provide almost indistinguishable
mean values. For large CNR’s, the expectations yielded by (4.50) and (4.54) are also indis-
tinguishable, as they should be. However, the most interesting observation is that for CNR
< 15 dB, the approximations in  (4.54) and (4.56) as well as the PCI expression, fail to
represent the data. Expression (4.50), however, provides a better fit to the data, at least for
10 dB < CNR < 15 dB. This observation supports the assertion that, unlike SMI processing,
for eigenanalysis-based processing the CSNR is not independent of the covariance matrix.
It is clearly evident in the figure that the CSNR of SMI-processed data is independent of
the CNR, while the CSNR is CNR-dependent for the eigencanceler. It is also clear from the
figure that the eigencanceler theory provides a lesser fit to the data for CNR < 10 dB. That
is due to the asymptotic nature of the expressions. Indeed, when the number of snapshots
was increased to K = 3N = 3N,N,, Figure 4.3 shows that the expectation using the new
probability density in eq. (4.50) represents the data down to CNR = 8 dB.

Figure 4.4 shows the result of a further increase in the number of samples to K = 4N. The
theory now provides a good fit to the data down to CNR =5 dB.

As noted above, the asymptotic approximations seem to have little adverse effects at CNR
> 10. Further support to this can be found in Figures 4.5 and 4.6. Each of the data points
in the figure is an average of 100 Monte-Carlo runs. In Figure 4.5 the mean CSNR is shown
as a function of the number of snapshots K, at CNR = 10 dB.

The new probability density provides an accurate fit to the data, down to a sample size of
K = N samples. The two approximations to the probability density, as well as the PCI
density, show a slight bias. The SMI density provides a good fit as well. For K < N the
SMI cannot be applied, since the estimated covariance matrix R becomes singular. Figure
4.6 shows the mean CSNR of the eigencanceler only, as a function of the number of samples
K, down to K = N/16.

Again there is good agreement between the new probability density and the data. The
approximation given by (4.54) maintains only a slight bias. The bias of approximation
(4.56) is slightly larger, while the PCI density is more significantly off at very low number
of samples. We can conclude from these plots that at CNR 2> 10, (4.50) provides a very
accurate description of the data down to a very low number of samples.

Figure 4.7 provides the histograms of p for the SMI and the eigencanceler produced by 10,000
runs at CNR = 10 dB. The number of samples used to estimate each covariance matrix was

K =4N.
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Figure 4.3 The mean conditioned signal to noise ratio as a function of the clutter to noise
ratio for covariance matrix estimates using K = 3N samples.
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A good match is observed between the probability density in (4.50) and the data. Likewise,
the SMI density also provides an accurate representation of the data. The approximations
to the eigencanceler’s probability density as well as the PCI’s provide a reasonable, though
markedly less accurate, match to the data.

4.3 Discussion

A new expression has been developed for the probability density function of the CSNR of
eigenanalysis-based array processing. The new expression is derived from the asymptotic
theory of the principal components of the estimated covariance matrix. It is shown that,
unlike the case for the SMI method, the eigencanceler’'s CSNR probability density is not
independent of the covariance matrix. The new probability density provides a better fit to
the data than expressions which are independent of the covariance matrix, for a wide range
of interference to noise powers. Two simpler approximations are derived for the case of large
INR. These approximations are shown to be independent of the covariance matrix and to
provide a good fit to the data for INR > 15 dB. The asymptotic nature of the expressions
seems to have little effect for INR > 15 dB. However, by increasing the number of samples
to K = 4N = 128, the new density produces a good match to the data down to INR =5
dB.
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CHAPTER 5

PERFORMANCE ANALYSIS

Airborne surveillance radars are faced with the difficult task of detecting weak moving targets
in strong clutter and interference environments. Typically, the spatial and temporal spectra
of the clutter is unknown and varying, hence adaptive techniques with fast convergence
rates are important to the designers of next generation air surveillance radars. The airborne
radar problem is two dimensional, with echoes of a moving target being a function of both
angle and Doppler. A space-time receiver architecture that consists of an antenna array and
provides temporal filtering of each spatial channel is capable of exploiting the information
in both domains.

Previously, in chapter 1, it was mentioned that the SMI detector suggested by Brennan and
Reed has a number of drawbacks like its detection performance, convergence rate for large
N, sensitivity to calibration errors, and not being CFAR. Kelly’s GLR [14] based detector
is more complex and has convergence properties similar to the SMI detector. Calibration
errors are also a problem. The SMI method was shown to be sensitive to calibration errors
[15, 16]. In this chapter we advance that most of these drawbacks can be avoided in the case
of STAP radar, by a linear eigenanalysis-based detector.

This chapter analyses the performance of the eigenanalysis-based detector with respect to
convergence rate and sensitivity to calibration errors. Theoretical probability of detection
expressions derived analytically are corroborated by simulations. Convergence rate and
robustness are analyzed and compared to the SMI method. The analysis and numerical
results clearly indicate the advantages of the eigenanalysis approach for space-time radar.
These results are further supported by processing and analysis of Mountain-Top dataset.

5.1 Performance Analysis
This section provides the performance analysis for the eigenanalysis-based method with
respect to detection and robustness to calibration errors. Results are interpreted through a
performance comparison with the SMI method.

5.1.1 Detection :

A widely accepted measure of performance for radar systems is the probability of detection
curves. These curves show the probability of detection with the input SNR as an independent
variable and the probability of false alarm as a parameter. In adaptive radar, detection
probability is a function of the weight vectors. In turn, weight vectors are derived from
estimates of the covariance matrix of the secondary data, and as such are random variables.
This makes the detection probability realization-dependent. To assess the receiver operation
under a wide variety of conditions, it is desired to generate average probability of detection

curves. A convenient procedure consists of expressing the detection probability as a function
of the CSNR defined in the previous chapter. The definition of the CSNR is repeated here
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for convenience: )
H
wis
_SNRgg s 1

- =1 1
# = SNRopt  WHRwsHR s (5-1)

where SNR_g is the effective SNR and is defined as the ratio between the target power and
the colored noise power at the array output, i.e.,

2
|

wHRw

SNR.g = (5.2)
and SNRopt = sPR~1s is the optimal SNR. The conditioned SNR is a random variable,
always bounded 0 < p < 1. The density of the conditioned SNR for the SMI method with
Gaussian data has been characterized in [10]:

f(p) = const x (1 — p)N =2 KN 0<p< 1. (5.3)

The density of the conditioned SNR for the eigenanalysis-based detector has been derived
in [1). The development is based on the asymptotic expansion of the distribution of the
principal components of the covariance matrix. Therein it is shown that the conditioned

SNR can be expressed as
1

14 4¢
where ( = Y0, v, and »; are i.i.d. random variables with exponential distribution and

hence, ( is a Gamma random variable with r degrees of freedom and parameter 1. This
characterization results in the density

p (5.4)

LI, K 1_
flp)=Kp™?} —exp (——(—”———l) (5.5)

=1 7t v;

where 7; = [T}y jzi i/ (7; — 7i). The usefulness of this expression has been demonstrated
by Monte Carlo simulations presented in the reference. Also shown in the reference is that
for large clutter-to-noise ratio and large K (K > 10),

p1— %c. (5.6)

From (5.6), and using the property of the gamma distribution, E [(] = r, the condition
E[p] = 1/2 is met for K = 2r. This property is significant in the space-time array since
r=v+k—1<« vk =N holds even for moderate size arrays. A higher convergence rate
is tantamount for achieving the same performance level using estimates based on smaller
secondary datasets. Since the clutter environment can be assumed only locally homogeneous,
an increased convergence rate could be essential to the proper operation of the system.
The decision statistic for detection conditioned on the weight vector is given by the instan-
taneous output power:

n= lexl2 (5.7)
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When x is the signal received from the cell under test and is modeled as a complex Gaussian
random vector with circular symmetry under both hypothesis models, the statistic n has a
chi-square like density:
1 5
fo(n | Hiyw) = %fe""/"' (5-8)

1

2
where ¢ = 0,1, and the statistic mean values are %, = Eg, [y] = o2 WHS} + wHRw and
Mo = En, [n] = wHRw. Scaling of the weight vector does not affect the conditioned SNR.
To simplify notation, it is assumed that the gain of w has been set such that wfs =1. For

a given threshold 77, the probability of detection is given by

P, = fo(n | Hi,w)dn
nr

= e~r/Mm (5.9)

The probability of false alarm is given by

Pr = [ fin| How)dn
T
— 6—7IT/ﬁo (510)
The mean value of the decision statistic is equal to the average output power. An upper

bound on the performance can be obtained from the case when the true noise covariance
matrix is known. Then, the optimal weight vector with the unity signal gain constraint is

-1
given by w = kR™s, with k = (SH R'ls) . The output power under Hy is given by:

1

_ 1
To= g = k= - (5.11)
From which the probability of false alarm is
Pj = e~or (5.12)

The probability of detection can be expressed directly in terms of the probability of false
alarm by noting that the output power under H; is:

1 1
= _ 2 — 2 -
T =0 + SHR_IS Os + a (5'13)

from which it follows that the probability of detection, expressed as a function of the proba-
bility of false alarm, is
P, = e~/
‘ 1/(1+as?

To obtain expressions for the detection probability of the SMI and the eigenanalysis methods,
we observe that, under either hypothesis, the output power can be expressed in terms of the

46




conditioned SNR p and the parameter . From (5.1) and (5.7) the conditional output power

under Hy is:
7y = — (5.15)
Mo = pa .

It follows fhat the conditioned probability of false alarm is given by:
Py, = €77 (5.16)

The average probability of false alarm is then computed from

Pr= [ Profu(o)dp (5.17)

where f,(p) is given by (5.3) for the SMI method, and by (5.5) for the eigenanalysis method.
The conditioned output power under Hj is given by,

1
= 2
= —_ 5.18
M s + pa ( )
and the conditional probability of detection is

nr
Ple = exp (—0_—2—+-1/-—pa') (519)

The average probability of detection is then expressed:

Pi= [ Pafy(o)dp (5.20)

These expressions are used later to generate the theoretical probability of detection curves
for each of the methods.

5.1.2 Robustness

It is well known that the performance of adaptive arrays is affected by calibration errors.
Analysis of the Mountaintop data reported in chapter 6 reveals target cancelation due to
the mismatch between the true received signal vector and the steering vector used in calcu-
lating the weights. Also noted in chapter 6 is the fact that the target cancelation is more
pronounced for the SMI than for the eigenanalysis method. This observation motivates the
analysis in this section.

Target cancelation occurs when there are calibration errors and the target signal is present
during training (estimation of the noise covariance matrix). Since the steering vector is
mismatched to the signal vector, the target is interpreted as an ‘interference and the array
proceeds to cancel it. To isolate signal cancelation from noise covariance matrix estimation
effects, we assume that the true covariance matrix is known. In fact, this assumption
accurately represents the case when the weight vector is applied to the data it was derived
from. Additionally, we make the following simplifying assumptions for analytical tractability:

1. Processing is carried out only in the spatial domain.
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2. Calibration errors are limited to the angle of the steering vector. Thus, the target
and the presumed steering vector are represented by vectors of the type

: , T
s(0) =T [L,e,...,ef¥-10] "
3. There is a single interference represented by the vector s;.

4. The interference vector is orthogonal to the true target vector, sfs = 0.

The perturbation model presented above represents the case when the steering vector
sweeping an angular sector searching for targets is pointing off-target. A method sensitive
to such errors would require a dense search pattern. However, it should be noted that this
model is a simplification which does not cover angle errors randomly distributed over the
array. These errors lead to waveform distortions rather than an angle error. Thus the simple
model used here provides some, if limited, indication of the robustness of the eigencanceler.
The Mountain-Top data analysis presented in the next section lends further support to the
robustness claims.
The analysis will be shown to be invariant to a scaling constant, hence we define the
normalized covariance matrix,

R = I+7°ss” + &s;s? (5.21)
where 2 = SNR and &7 = INR (interference-to-noise ratio). Performance is investigated
through the gain term

B i (5.22)

where R; is the noise-plus-interference covariance matrix, R; = I4+3?s;s¥. This gain is the
ratio of the array output SNIR to the input SNR. In the ideal case, when there are no
calibration errors, and due to the orthogonality assumed between the interference and the
target, it is readily shown that G = 1. Consequently, in the presence of calibration errors
0 < G < 1. The goal is to characterize G for the SMI and eigenanalysis methods. The SMI
weight vector is given by

w=R"'3 (5.23)

where § is the presumed steering vector. The eigencanceler weight vector is given by:
w= (I - s,-s,-H) s (5.24)
The gain G for each of the methods is computed in the appendix. For the SMI it is found:
_ o (1 = )°
=@ laf =% (2= %) e

where p; = §fs, p, = §%s;, v, = SNR/ (1 + SNR), and 4; = INR/(1 + INR). Note that
0 < 9s,7 < 1. As observed by other authors through similar analysis, G, degrades as SNR
increases. In the extreme case, SNR = oo (s = 1), and G, = 0. The other extreme is

7 | (5.25)
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G, = |;m|*/ (1 - |p2|2), obtained for 4, = 0 and 4; = 1. The eigencanceler’s gain term is
computed in the appendix and is given by:
2
— 2y
1—|psf’

From (5.25) and (5.26) it is observed that G, < Ge, with the equality for 4, = 0 and v; = 1.
Consequently, the eigenanalysis method is less affected by angle calibration errors than the
SMI method. This is illustrated in Figure 5.1, where G, and G, are plotted for a 14-element
array, several values of the SNR factor +,, an error angle of = /10 radians, and an angle of
47 /10 between the presumed steering vector and the interference.

(5.26)
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Figure 5.1 Signal cancelation effects: G, G, vs. vs with 7; as parameter.

5.1.3 Numerical Results

In this subsection, theoretical probability of detection curves are generated for each of the
methods, and are compared to simulation. The array has eight elements and four tap delays
at each channel. The signal environment consists of clutter distributed in an angular sector.
The clutter is distributed between 20 degrees and 40 degrees. The total input CNR of the
distributed clutter equals 15 dB. The look direction steering vector points to 50 degrees
and 0.5 normalized Doppler frequency. Eq. (5.20), together with (5.5) and (5:3), provides
the means to analyze the detection performance numerically. Theory and simulations are
compared in Figures 5.2 and 5.3. The densities of the conditioned SNR for the eigenanalysis
and SMI methods, for K = 2N samples, and as given in (5.5) and (5.3), are shown in the
lower part of Figure 5.2. The eigencanceler was computed using r = 6 principal eigenvalues.
The upper part of Figure 5.2 consists of histograms developed from 10,000 simulation runs.

49




A good fit is observed between the theoretical and the simulation curves. Figure 5.3 plots
the probability of detection for the various methods, i.e., the average probability of detection
versus the input SNR.

The detection threshold nr is found from the solution to (5.17) when the average probability
of false alarm is set to 1075. The probability of detection is computed using (5.20). The
curve labeled “opt” is the optimal case obtained from (5.14). The probability of detection
curves also show a good fit between theory and simulations.

5.2 Discussion

In this chapter we studied eigenanalysis-based detection for airborne surveillance radars
and compared the performance to that of the SMI method. Analytical expressions for the
receiver operating characteristics were obtained based on the asymptotic expansion of the
distribution of the principal components of the covariance matrix and were corroborated by
simulations. The results clearly indicate the higher convergence rate of the eigenanalysis
method. Expressions were developed to characterize the robustness with respect to the
pointing error. This model is a simplification of the more general case of random angle
errors.
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CHAPTER 6

PERFORMANCE ANALYSIS USING EXPERIMENTAL DATA

Conventional beamformers cancel the interference without considering a desired signal.
A linearly constrained adaptive array, however, tries to preserve signals at a given angle
and/or Doppler frequency. To preserve a presumed desired signal, a steering vector is formed
using theoretical output of the antenna array under ideal conditions. This steering vector is
used to calculate the weights for a given adaptive criteria, such that there is some gain in the
direction of the desired signal . However, due to practical limitations the presumed steering
vector and the true desired signal do not necessarily match. This mismatch, also known as
the perturbation problem, causes signal cancelation when the optimum array processor is
used.

The perturbation problem, which has many sources, has been an active research topic.
The perturbation due to pointing errors, mismatch between the presumed and true angle
of arrival, was studied by Er [17]. Hybrid techniques were suggested by Habu [51] to
overcome pointing errors. Another source of mismatch is the calibration errors that results in
random gain and phase errors at every element. The gain and phase mismatches are caused
by unmatched antennas and receiver electronics, producing a different response at every
channel. Previous work on calibration effects includes the problem of small phase errors
at each element [52], and the more general case of amplitude and phase errors [53, 54, 55].
Certain array processing criteria also requires a prior knowledge of the interference corre-
lation matrix, i.e. the Weiner solution. In general, the true correlation matrix of the inter-
ference and noise is not available and it needs to be estimated from a finite record of the data.
The estimation error, due to training set size limitation, affects the performance of the array.
Using a larger training set for a better estimate, may also result in problems if the data is
not completely stationary. If the training data set includes the desired signal, the estimated
correlation matrix has a desired signal component. If the desired signal component is large,
the processor interprets the desired signal portion mismatched to the steering vector as inter-

ference, and signal suppression is observed even with a small steering vector perturbation
[15, 56].

6.1 The Mountaintop Data Package
The Mountaintop Program was initiated to study advanced processing techniques and
technologies required to support the mission requirements of the next generation airborne
early warning platform. In this chapter, the radar and the data processmg aspects such as
_calibration and pulse compression are discussed.

6.1.1 Description of the Assets

Two major assets of the Mountaintop Program are Radar Surveillance Technology Experi-
mental Radar (RSTER) and Inverse Display Phase Central Array (IDPCA). RSTER is a 5
meter by 10 meter vertically polarized array made up of 14 row elements with an independent
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phase shifter, transmitter and receiver. This original configuration, with adaptivity in
elevation, is referred to as the RSTER configuration. The antenna was designed to be
mounted vertically to achieve azimuth adaptivity. This configuration is referred to as
RSTER-90. The basic set up of the data collection is given in Figure 6.1. IDPCA was
developed to overcome the challenge of providing a meaningful emulation of the airborne
surveillance environment. For a fixed radar, IDPCA produces clutter returns with the same
spatial and temporal characteristics as observed from an airborne surveillance platform.
Since clutter profile in azimuth-Doppler space is due to the motion of the aperture’s phase
center, to effect the emulation one can move an antenna or deploy several antennas and
move between them. Apparent motion occurs along the length of the array. The IDPCA
is a transmit-only device and the clutter returns are received through the larger RSTER-90
antenna. The effectiveness of the IDPCA’s motion was demonstrated by comparing the
clutters returns of IDPCA to clutter returns using a Lear jet [57].

6.1.2 Calibration

Theory of array processing is developed assuming ideal elements (channels) with omni-
directional, identical and equally spaced antennas and perfectly matched channel receiver
electronics. However, to satisfy these ideal conditions is an impossible challenge. The
hardware calibration is limited by the current available technology, but the calibration can be
enhanced by using digital filters to compensate for the differences in the receiver electronics,
and the antenna mismatches. In this section, the design of the digital calibration filters are
discussed.

Calibration is done in two stages: Receiver Calibration (RCAL) and Antenna Calibration
(ACAL). RCAL covers differences in amplitude and phase ripple between channels at inter-
mediate frequency (IF). ACAL compensates for amplitude and phase match differences
between channels at radio frequency (RF). RCAL and ACAL files are recorded while two
different, known test signals are injected into antenna/receiver hardware. For RCAL, a
1 MHz LFM is injected into all channels of RSTER in the IF portion of the receiver, after
the RF channel equalizer filters. During the injection of this test signal, data is recorded
after A/D conversion and direct baseband quadrature sampling (DBQS) at a 1 MHz rate.
For ACAL a 500 KHz LFM signal is injected at the antenna immediately after the duplexer
assembly. Data is recorded after the A/D, using DBQS at 1 MHz sampling. Complex
weights are determined from this data set in order to equalize the channels.

6.1.2.1 Design of Receiver Calibration Filters

The band limited receiver is modeled with a transfer function. RCAL files are used to design
a transversal filter, which estimates the receiver transfer functions and equalizes to match
each channel to the reference channel. The output of a transversal filter, as shown in Figure
6.2 is given by the finite convolution sum

Ni-1

yi(n) = Z wiui(n — k), (6.1)

k=0
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Figure 6.2 Transversal Linear Prediction Filter
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where N; denotes the number of tabs, u(n) is the input to the filter and wy are the weights
calculated using the least squares (LS) algorithm. The output of the first antenna, u;(n), is
used as the reference signal. To calculate the weights for the i** element, the LS algorithm
minimizes the power of the error function given by

Ne-1
ei(n) = ui(n) — kX_: wiui(n — k). (6.2)

Assuming N samples of data are recorded, it can be easily shown [58][59] that the error
function, e;(n), is minimized when

w; = Atuy, (6.3)
where

Wi 0 uj(Ny — 1)
w; = wf’l : u; = u;(:Nt) ; (6.4)

wi,l;lz—l u’{(N -1)

ui(Ny — 1) ui(NVy) oo u (N =1)

ar o | D) D) N2 | 05

i (0) W) o w(N =N

and (+4) denotes pseudo-inverse for an over determined system given by

AT = (AFA) AR, (6.6)

6.1.2.2 Design of Antenna Calibration Filters

The antenna calibration is the second stage of the calibration. Amplitude and phase
correction is utilized to overcome mismatches between signals at the receiver inputs. The
antenna mismatch is modeled as a single complex weight, since the antenna has a large
bandwidth. A known test signal is injected immediately after the duplexer assembly, and
the output is recorded at the output of A/D into ACAL files. Since the ACAL signal
travels through both the channel front end and the receiver portion, prior to determining
the antenna calibration weights, the data is equalized using RCAL weights. This equal-
ization step is only needed if the injected test signal is LFM, and not needed if it is a single
frequency. To calculate the single weight needed for the ¢;, element of the array, (6.3) is
used with N; = 1. Again, the output of the first antenna, u;(n), is used as the reference
signal.

Figure 6.3 illustrates the effects of the calibration process. Shown is CPI 1 -of ACAL file
acal585vl.mat before and after calibration. In Figure 6.3(a), the magnitude of channel
outputs are plotted on top of each other. Every channel’s output has a different shape and
amplitude for the same injected test signal. In Figure 6.3(b), the same data is plotted after
receiver equalization using RCAL weights designed with the RCAL file rcal585v1l.mat and
N; = 31. Compared with Figure 6.3(a) the equalized channel outputs have the same shape
but different amplitude. The amplitude differences are calibrated using ACAL weights,
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Figure 6.3 Results of Receiver and Antenna Calibration
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which are designed using the ACAL file after receiver calibration. In Figure 6.3(c) the
output of the channels are plotted after the antenna calibration, where all the outputs have
the same shape and amplitude.

6.1.3 Pulse Compression

In order to receive measurable target returns, the transmitted pulse must have enough
energy. A signal with a larger amplitude may be transmitted to increase the energy of
the signal but the amplitude of the signal is limited by the transmitter power. An other
approach is to use a longer pulse, but this causes problems with the resolution of the radar.
For example, if a 100 us pulse is transmitted, a 15 km resolution would result which is not
practical. The Mountaintop radar uses pulse compression to achieve high range resolution.
The radar transmits a wideband Chirp pulse. The chirp radar concept is'described in detail
by Klauder [60] and Wehner [56]. Samples of the complex envelope of a chirp signal is given
by the relation

s(n) = ei2n(wn/2=n/2) n=0,1,---,N—1, (6.7)

where N is the number of samples taken during the pulse and assuming Nyquist sampling
rate, w = 1/(N — 1). A plot of the transmitted pulse envelope, pulse frequency, and RF
wave form as a function of time, is given in Figure 6.4 (a), (b), and (c), respectively. The
matched filter to this pulse is given by

s(n) = eB?r(wn?/34n/2) n=-N+1,-N+2,--,0. (6.8)

The output of the matched filter is plotted in Figure 6.5. To generate these plots, a 100 s
pulse is used with a 1 us sampling period which results in 100 samples, N = 100. Using
this method the 100 us pulse is compressed to give a resolution of 1 ps which corresponds
to 150 m. The largest sidelobe is 13 dB below the main lobe. Windowing can be used to
get lower sidelobes, but this will cause a wider mainlobe. In this chapter, none of the plots
generated using the experimental data used windowing on pulse compression.

6.2 Joint Domain and Cascade Processors
This section gives some background into joint domain and cascade processing. Also we shall
introduce and define some parameters that will be used through out this chapter.

Define the data matrix X which is made up of N;z N, samples of returned data and is given
by

Z1,1 1,2 - T1,N,
T2,1 T2,2 -  T2,N,

X = ,’ . . . . (6.9)
mNtyl thz ot thNa

If a target is present at a given range cell, X has the form

X=X;+X; +X,, (6.10)
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where X, is the target signal (desired signal), X; is the interference, and X, is the noise
matrix. If a target is not present in a given range cell then

X = X + X, (6.11)

The columns of X, are samples in time that give information about the velocity of the
target. The rows of this matrix are samples in space that give information about the angle
of the received signal. In the ideal case, when the spatial channels are co-linear, identical,
omni-directional and equally spaced with spacing d, the entries of matrix Xy are given by

za(k,n) = 94 ian((k=1)tr+(n=1)s) (6.12)

VN Ny

where o3 is the desired signal power, 9, is the normalized spatial frequency and 4, is the
normalized Doppler frequency. The normalized spatial frequency is given by

. = 27 d;m Hd’ (6.13)

where ) is the wavelength of the transmitted signal and 6, is angle of the target. The
normalized Doppler frequency is given by

2vPRI

t — A ’

where v is the radial velocity of the target. The desired signal component of the matrix X,
under ideal conditions, can also be written as

(6.14)

Xd = O'dStSsT, (6.15)

where s;, the N; x 1 normalized temporal steering vector, and s,, the N, x 1 normalized
spatial steering vector, are given by

1 1
o= — i A s,=— s (6.16)
= — n s = .
‘T VN : * VN, :
ei2n(K -1t ei2m(N-1)s

The N, N, x 1 normalized joint-domain steering vector is formed by stacking the transpose
of the rows of X  and it is given by

S; =5®8;, (6.17)

where ® is the Kronecker product. Assuming PRI, d, and A have been properly chosen to
meet the Nyquist sampling criterion, 1, and ¢; are confined within [-0.5,0.5].

For space-time radar, joint-domain and cascade processing are two possible configurations.
With the joint-domain linear processor (see Figure 6.2(a)), the data is processed as follows,

n; = wilx;, ‘ (6.18)
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where w; is the N, Ny x 1 joint domain weight vector and x; is the N,y x 1 joint-domain
data vector formed by stacking the transpose of the rows of the data matrix X.  There
are two cascade configurations: time-space (T-S) and space-time (S-T). The T-S config-
uration consists of K-dimensional temporal processing followed by N,-dimensional spatial
processing. S-T configuration processes the data in the opposite order. Block diagrams of
cascade configurations are shown in Figure 6.2 (b) and (c). In the T-S configuration the
input to the temporal processing stage is data matrix X. The output of this stage is the
N, x 1 spatial data vector:

x, = XTw,*, (6.19)
where w; is the N, x 1 temporal weight vector and (*) means complex conjugate. The output
of the temporal processor is used by the spatial processor, which produces

Nts = Wsts, (620)

where w, is an N, x 1 spatial weight vector. Similarly, for the S-T configuration the output

of the spatial beamformer 1s
X = st*, (6.21)

where X; is the N; x 1 temporal data vector and the output of the temporal beamformer is
Nst = WtHXt. (622)

Both of these cascade configurations may use different adaptive criteria for processing in both
domains. The performance of the cascade should approach that of the optimum processor
with the same configuration. Cascade processing, especially the S-T configuration, has been
very popular in recent years, but it has been shown that joint-domain processing performs
better than both cascade configurations [61].

Later in this chapter, the joint-domain and the post-Doppler processors are applied to the
Mountaintop data. The post-Doppler processor has a cascade configuration with a non-
adaptive temporal processor followed by an adaptive spatial processor.

6.3 Array Improvement Factor
Under the assumption of uncorrelated signal, interference and noise, the correlation matrix
of the data vector x, which may have the form of x;, x; or x,, is given by

R = E [xx7] = 3Ry + o?Ri + (07/N)L, (6.23)

where N is the length of the data vector x, o3 is the desired signal power and Ry is the
autocorrelation of the desired signal given by

Ry = X4%4" . v (6.24)

R, is the autocorrelation of the interference, o? is the interference power, and o2 is the power
of the white Gaussian noise. Ry and R; are normalized to have a trace of one.
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The output power of the beamformer as a function of w is given by

PBF(W) =F [IWHx|2] = [waxHW]
= wHRw (6.25)

= oiwHRyw + o?wFR;w + (62 /N)wHw.
The first term of Pgp is the signal power and the remaining is the interference-plus-noise
power. Signal-to-interference-plus-noise ratio at the output of the beamformer is given by
2
a§|wad' SNle xd’
o*wHRw + (02 /N)wHw _ INRWHR,w + (1/N)wHw’
where SNR = ¢3/0% and INR = 6?/02.
The array improvement factor (AIF) is defined as the ratio of SNIRgFr to SNR at the input
of the beamformer as a function of the weight vector:

SNIRgr =

(6.26)

G(w) = o] (6.27)
WHRH..nW, )
where R;,, is the interference-plus-noise correlation matrix defined as
R;;, = INRR; + (1/N)I (6.28)

Assuming x4 and Ry}, are known, SNIRpF is maximized by the Weiner solution given by
=kRi,xa and  G(w,) = xR} xy, (6.29)

where k is a gain constant and does not have an effect on the AIF. To study the behavior
of the AIF, first consider a noise only correlation matrix (¢? = 0), For this case the weight
vector and the AIF are given by

W, = kxg4 and Gn(W,) = N. (6.30)

With a single interferer (R; = x;x;), inverse of the correlation matrix is given by

INR- L u

-1 ~.H -1 _ _ ~ )
R, = (INRx;x;" + (1/N)I) NI 7 INR. XX, (6.31)
and the AIF is given by
INR-L Ho 2
G,‘.*_n(Wo) =N — 1_-}-1—N—R—-—ZIXCI X,l . (632)

Gitn is confined within [(N — 1), N]; the maximum value is achieved when the INR = 0 or
x4¥%; = 0 and the lower limit is obtained when the INR = oo and x,7x; = 1.

However, in many cases of practical importance the available information about the desired
signal vector is imprecise. Also, the correlation matrix of interference-plus-noise is estimated
using a finite set of data. These two practical problems cause a decrease in performance
of the Weiner solution. Later, the AIF will be used as the figure of merit to compare the
performance of the SMI and the eigencanceler methods under these conditions.
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6.4 Array Improvement Factor Calculations
In this section the effects of calibration errors in terms of the AIF dependency on the
desired signal component of the correlation matrix are studied. For analytical tractability,
the special case of a single interference and the spatial processor is considered. The results
are provided in terms of the SNR, INR, and the projections between the desired, presumed
and interference steering vectors.
Consider the estimated correlation matrix given by

R = o2sys! + o2sisf + (62/N)I, ' (6.33)

where 02, 0?, 02 are desired signal, interference and noise power, and sq and s; are desired
signal and interference vectors, respectively. For the spatial processor the presumed steering

vector has the form
1

e.ﬂ’”f’m
Sm = 1/1/N , : (6.34)
ej2‘“'( N."'l)'l’m

where N is the number of antenna elements. %, is the normalized spatial frequency of the
presumed look direction, and it is related to the presumed target angle, 6,,, by:

dsin 0y

A ’
where ) is the wavelength of the transmitted signal and , is angle of the target. The desired
signal vector has the form

"»bs = (635)

c.0 G
J2myg
1 c,e c,
Sq = i and c= R N (6.36)
[ . :
j2m(N—1)¥g4
Cn_1€ Cn_1

where ¢ is a complex random variable with Gaussian-distributed magnitude and phase. The
vector ¢ is used to model the amplitude and phase errors. Assuming good calibration, both

the magnitude and the phase of ¢; have small variance. The mean of the magnitude is 1/1/N

and the mean of the phase error is zero. In case of the ideal calibration, ¢; = /1/N. The
difference between the true target angle and presumed target angle, 0., — 04, is the pointing
error. Under ideal conditions (no errors), the desired signal vector equals the presumed
steering vector. Since the interference signal goes through the same channels as the desired
signal, the interference steering vector has the form ‘

C, .
J2my
€

C
si= . , (6.37)

j2m(N—-1)¥;
N-1
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where 1; is the normalized spatial frequency of the interference. The projections between
the steering vectors are defined as

Pmd = sgsd, Pmi = sgsi and Pid = S{{Sd. (6.38)

Without loss of generality, assume o2 = N. Then, R can be written as
R = o2sysll + o2s;sP +1 (6.39)
In terms of its eigenvectors, R is given by
R=(h-Daa] + (% — Dapaf +1, (6.40)

where q is the I** eigenvector and ), is the I** eigenvalue for [ € [1,2]. For I € [3,N], the

eigenvalues are equal to 1. The signal-plus-interference subspace is 2-dimensional and the
" noise subspace is (N — 2)-dimensional. Using o2, o2, and p;s (see Appendix A), first two
eigenvalues of R are given by

ot + o2 40202(1 — |pia|®)
Aig=—t—2 14,1 - —=¢ . 1. 6.41
Y2 R (41
The eigenvectors corresponding to these eigenvalues are given by
84 + a1 ,28;
q1,2 = 5 " ) (642)
Vit lenal® + 2Re(en,2p%)
where « is \ ) )
1,2 — 0y 0; Pid
= = . 6.43
e o3Pt M2 =0} (643)
The inverse of the estimated correlation matrix is given by
R, =1-Biqqf - faeaf, (6.44)
where 3 ;
fra=——- (6.45)
1,2
The AIF for SMI is calculated using (6.27) and (2.7) as follows:
—~ |2
IsﬁRzlsdl
Gsmi = —==; =, (6.46)
sHR_'Riyn R s
where
Ry, = U?SiS{I + 1 (6.47)
The numerator of Gj,,; is given by
[SHR; 8| = |pma — BrsHenalis — Bosazafisd| (6.48)
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and the denominator is given by

HR? R 2 2
sta: Ri+nRx Sm= 1+ o; Ipmil
H 2
qy S;

+(,312 - 26 + 5120,-2 ; )SgChQ{JSm

+(82 — 282 + Bio?|allsi| )sHazaf'sm (6.49)
+20,8:02 Re(sE q1q!’s,s,7 a2 sm)

—202B; Re(s,7 9195, pmi)
_20-1'2/82R€(55Hq2qgsmpmi)-

2

In the same manner, the array gain for the eigencanceler is calculated using (6.27) and (4.2),
with r = 1 (single interference), as follows:

[sH(1 - aafl)sa

Geio = . 6.50
0 = SE(T - ) Rirn (L — il )5 (6:50)
The numerator of Ge;, is given by
H Hye |2 H He |
|s#(T— araf!)sa| = |pma — sEaraflsa| , (6.51)

and the denominator is given by

2 2
sPaqy| —1)|sHa| — 2Re(o?pmisl anar’sm).  (6:52)

Wi RisnWeig = 1+ 02| pmil” + (0

To study the effects of the SNR, INR, calibration and pointing errors, the Gom; and Ge;, are
plotted. For all of the plots o2 = N, where N = 14, and the Ggmi and Ge;, are normalized
by N.

In Figure 6.7, Gom; and Ge;, are plotted as a function of the presumed target angle, 4, for the

case of ideal phase and gain calibration, ¢; = 1/1/N. In Figure 6.7(a), the correlation matrix
has no signal component, 02 = 0. Under these conditions, SMI is the optimal solution, since
R is the true correlation matrix of the interference and Gaussian noise. The Gomi and Geig
overlap for o? = 1400 (INR = 20 dB). In Figure 6.7(b) the desired signal component is
present in the correlation matrix, o2 = 140 (SNR = 10 dB). For this case, SMI works only
if 8, = 6;. A slight pointing error causes a large decrease in the AIF. The eigencanceler,
however, is much less affected by the increase of the SNR

In Figure 6.8, effects of the phase errors, and pointing error are studied. There are no
amplitude errors, |¢;| = 1/1/N, and the phase errors are modeled as a zero-mean Gaussian
random variable. Phase errors are averaged over 50 iterations. As the standard deviation
. (STD) of the phase errors increases, Gsmi starts to. decrease, due to the mismatch between
the desired and presumed steering vectors. The mainlobe is again very narrow due to the
presence of the desired signal. The eigencanceler is very robust against the phase errors as
seen in Figure 6.8(b), where the mainlobe is hardly changed even for high phase errors.

In Figure 6.9, effects of the amplitude errors and pointing error are investigated. There are
no phase errors, Z¢; = 0. The STD of the amplitude errors are normalized by the mean of the
amplitude, which is 1/ V/N. Again the SMI method performs if there are no pointing errors
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and the STD of the amplitude errors are very small. Performance is degraded, however,
if the STD of amplitude errors are increased or a small pointing error is introduced. The
eigencanceler is again robust with respect to amplitude errors and maintains the ideal shape
for the mainlobe shape even with amplitude errors of 10% STD from the mean. To generate
these plots, 50 iterations are used for every point.

In Figure 6.10, effects of the desired signal power, o3, on the pointing error is studied. There

are no phase and amplitude errors, ¢; = /1/N. When the 0% =0, both Gy and Geiy have
the same mainlobe as Figure 6.7(a), which is the ideal solution. As the desired signal power
is increased, the SMI’s mainlobe becomes narrower and the performance is decreased for
even a small pointing error. The eigencanceler’s performance is acceptable up to a SNR of
10 dB, but Ge, goes down rapidly as the SNR gets closer to the INR. This behavior is
due to the shift of the first eigenvector, which starts to look like the desired signal as the
SNR approaches the INR. When the SNR is equal to the INR, the eigencanceler fails even
when there are no pointing errors, because the first eigenvector has a large projection on the
desired signal, which causes desired signal cancelation.

In Figure 6.11, effects of the desired signal angle on the pointing errors is plotted. The desired
signal angle does not have a very significant effect on the shape of the mainlobe. As seen in
Figure 6.11(b), the mainlobe gets slightly larger as the desired signal anglg is increased. This
is due to the nonlinear mapping, from the physical to the electrical angle, given by (6.35).
As 0, gets larger, the electrical pointing error is smaller for the same physical pointing error.
Therefore, the mainlobe related to the electrical pointing errors becomes larger.

6.5 Mountaintop Data Analysis

Analytical results presented in the previous sections show that the eigencanceler is robust
with respect to steering vector perturbations. In this chapter, the performance of the eigen-
canceler and SMI are compared using the Mountaintop dataset. After describing the specific
data file used, range detection with corresponding antenna response and angle detection of
the target are studied. Training sets of different sizes from different regions are used. The
last section considers the signal suppression issue when the cell under test is included in the
training.

6.5.1 Description of the Data Files

Data analysis was done on IDPCA data recorded on Feb 10, 1994 at North Oscura
Peak, White Sands Missile Range (WSMR), New Mexico. For this data set, namely
t38pre01lvl.mat, IDPCA was used to emulate clutter at 245° and 156 Hz in Doppler. The
injected target is at 154 km in range, 275° in angle, and 156 Hz in Doppler. Theé bore
side angle is 260°. The transmitted pulse is an LFM signal with 500 KHz of bandwidth,
a central frequency of 435 MHz, and a 100 ps duration. Distance between the elements is
half the wavelength, d = A\/2. Recorded data is sampled at the Nyquist rate of 1 MHz.
The PRI is 1600 ps, which gives a pulse repetition frequency (PRF) of 625 Hz. Data is
recorded from 865 us to 1298 us after the pulse is transmitted, corresponding to range
cells from 130 km to 195 km with a range resolution of 150 m. Data is recorded into CPI’s
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Figure 6.8 Effects of Phase Errors and Pointing Error on the AIF

70




Gsmi

SNR=10dB | (a) Sample Matrix Inversion
INR = 20 dB
0, =0°

Geig

(b) Eigencanceler

Figure 6.9 Effects of Amplitude Errors and Pointing Error on the AIF

71




0.8d...--- .

04

Gsmi

10

15

s 20
. Om (deg)

INR = 20 dB (a) Sample Matrix Inversion
01 = 0° |
6; = —15°

0.6 S R

04 ...

.......

Gy

20 25

(b) Eigencanceler

Figure 6.10 Effects of Signal-to-Noise Ratio and Pointing Error on the AIF

72




Gsmi

0

(deg) 30 0 0a @,e@
SNR = 10.dB (a) Sample Matrix Inversion
INR = 20 dB

9, = —15°

Gez'g

(b) Eigencanceler

Figure 6.11 Effects of Desired Signal Angle and Pointing Error on the AIF

73




50 ! : ! T ! ! !

Magnitude of Range Returns (dB)

0 1 1 1 l
135 140 145 150 156 160 165 170 175

Range (km)

Figure 6.12 Magnitude Plot of Range Returns on IDPCA Data, CPI 6, PRI 1

with 16 PRI’s. Using (6.14), the normalized Doppler frequency of the target is 0.250. Since
14 antennas are employed, there are 14 samples in space. For each range cell a 16 x 14
space-time data matrix is formed. Using (6.35), the normalized spatial frequency of the
target is 0.129 and the normalized spatial frequency of the interference is —0.129. Notice
that both the target and the interference are at the same Doppler frequency, and they are
only separated spatially. Using CPI 6 of the data, the magnitude of the first PRI as a
function of range is plotted in Figure 6.12. The returns from the ranges are plotted with
respect to the sky noise level. The clutter is located from 140 km to 165 km. In Figure
6.13, the Doppler-azimuth plot of the target range cell at 154 km is plotted. As expected,
the energy is concentrated at 156 Hz and 245° due to the interference power. To study
the eigenvalue distribution of joint-domain processing, each range matrix is reshaped to
a joint-domain stacked data vector of size 224 x 1. To estimate the correlation matrix,
1200 training data vectors from matrix CPI’s 6, 7, 8 and 9 were used. The eigenvalues of
this correlation matrix are plotted in Figure 6.14(a), where the few interference eigenvalues
are well above the sky noise level. For post-Doppler processing, each range data matrix is
first processed temporally with the non-adaptive weight vector, which has the form of s; in
(6.20). Then beamforming algorithms are applied to the 14 x 1 spatial data vectors. The
correlation matrix of post-Doppler data is estimated using 300 data points from CPI 6. The
eigenvalues are plotted in Figure 6.14(b), where most of the energy is concentrated in the
first 4-5 eigenvectors.
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Figure 6.13 Doppler-Azimuth Plot for Target Range Cell

6.5.2 Target Range Detection

In this section, the target angle and Doppler frequency are assumed to be known and the
target range is detected. The data is plotted relative to sky noise. Sky noise data, namely
ncal585v1.mat, is recorded right after the experiment with the transmitter turned off. To
calculate the sky noise level at the output of the beamformer, the weights calculated for a
specific experiment are applied to the sky noise data. The mean of the sky noise output is
taken as the sky noise reference. If the beamformer is adaptive, the weight vector changes
with the training region and number of points used. For every plot, the sky noise level is
updated using the corresponding weight vector. For these plots CPI 6 is used, which has
300 data vectors.

First, the joint-domain processor with 14 antenna elements and 4 PRIs is studied. The joint-
domain data vector for this case is 56 x 1. In Figure 6.15(a), training is done over 300 points
from 135 km to 175 km, and the target range cells are excluded from the training set.The
target is located at 154 km and the power of the target spills over 5 range cells. Clearly, the
non-adaptive beamformer fails due to a large sidelobe. Both SMI and the eigencanceler have
the same performance. But this is not a realistic approach since a-priori knowledge of the
target location was used when estimating the correlation matrix. A more realistic approach
is given in Figure 6.15(b), where all the data vectors are used for training, including the
target region. Presence of the target region in the training set causes an increase in the
desired signal component of the estimated correlation matrix. The SMI method fails to
preserve the desired signal, and signal cancelation of 12 dB is observed. Performance of the
eigencanceler is not affected by high signal power in the estimate.
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Next, the post-Doppler beamformer is studied. After temporal processing, the post-Doppler
data vectors are 14 x 1. In Figure 6.16(a), training is over 300 data points, and the target
region is not included in the estimate. The performance of the post-Doppler processor is
better than the joint-domain processor because both the desired signal and the interference
have the same Doppler frequency. The joint-domain processor, which is adaptive both in
time and space, cancels the interference temporally and spatially. Because the interference
and target signal are in the same Doppler bin, some signal power is lost. The post-Doppler
processor performs cancelation in the spatial domain, where the target and interference
are separated. Therefore, the post-Doppler processor performs better for this specific data
set. In Figure 6.16(b), the target region is included in the training. The SMI method is
affected by the high desired signal component and the performance is degraded by 7 dB.
The eigencanceler, on the other hand, is not affected by the presence of the desired signal,
as shown analytically in section 6.4 and plotted in Figure 6.10. In Figure 6.17, training
with 50 data points is considered. In part (a), the training is done from 145 km to 152 km,
which is outside the target region. Both adaptive methods cancel most of the clutter. The
non-adaptive beamformer output does not change due to the fixed weights, and it is plotted
again as the clutter reference. An important observation is that the SMI method performs
more cancelation around the training region. This is due to the limited number of training
samples, which causes a correlation matrix to be a good estimate of the training region,
but very bad estimate globally. In parts (b) and (c), the training is done around the target
region from 150 km to 158 km. As before, when the target is omitted from the training
set, a very good performance is observed. Again the training region is nulled by the SMI
method, where the eigencanceler lowers the output but does not null out. In part (c), where
the target is included in the training set, the SMI method fails by treating the desired signal
as interference. Unlike the SMI, the eigencanceler does not null out the desired signal, but
the interference cancelation of the eigencanceler is degraded. Presence of the desired signal
shifts the largest eigenvectors towards the desired signal, causing a corrupt estimation of
the interference subspace. In Figure 6.18, training with 28 points-double the vector size-is
considered. This is the lower limit for SMI to work. In part (a), a deeper null is placed by
the SMI method in the training region. The performance of the eigencanceler is better than
SMI, which shows that the eigencanceler has a faster convergence rate. In part (c), both
methods fail. The signal cancelation problem of the SMI is magnified. The eigencanceler
still manages to save some of the signal power, but fails to cancel the interference. In fact,
interference cancelation is worse than with the non-adaptive method from 140 km to 150 km.

6.5.3 Antenna Pattern

In this section, the spatial response of the weights calculated for the post-Doppler range
plots of the previous section is studied. Assuming an ideal desired signal, the spatial data
vector will have the form of s, in (6.34). The normalized spatial frequency, ¥s, is related
to the physical angle by (6.35). The antenna patterns are generated by applying a given
weight vector to steering vectors for different angles. A desirable weight vector has a main
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lobe in the direction of the target and a null in the direction of the interference. In this data
set the target angle is 275° and the interference angle is 245°.

In Figure 6.19, the response of the weight vectors calculated with 300 training points are
plotted. The non-adaptive weight vector, plotted for reference, is the presumed steering
vector for the desired signal. Around the interference angle, both adaptive beamformers have
a lower sidelobe than the non-adaptive beamformer. In part (b), the target region included in
the estimate, the SMI method puts a small notch on the main lobe causing the performance
degradation observed in the range plots of the previous section. The eigencanceler’s sidelobes
resemble the non-adaptive weight vector, except in the interference region. Comparing both
parts, the eigencanceler is not affected by the presence of the desired signal in the estimate.
In Figure 6.20, the response of the weight vector calculated with 50 training points is plotted.
In part (a), a decrease in the training set number has affected the SMI method with increased
sidelobes, but the eigencanceler manages to keep the same shape. Even though interference
cancelation of the eigencanceler is degraded, we also observe from range plot for the same
training that the main lobe is still in the right direction and the sidelobes are relatively low,
keeping the shape of the steering vector. Compared to part (b) of the previous figure, the
small notch introduced by SMI on the desired signal in part (c) is even deeper.

When the training set is lowered to 28 range cells, see Figure 6.21, the SMI method does not
give a desirable antenna pattern even for the case of training outside of the target region.
The eigencanceler’s performance is still preserved in part (a). In addition, as mentioned
before for the range plots with the target included in training in part (c), both adaptive
methods fail and performance is worse than the non-adaptive beamformer.

6.5.4 Target Angle Detection

In this section, the target range and the Doppler frequency are assumed to be known, and the
target angle is detected. The post-Doppler data vector for the target range cell at 154 km
is used to detect the target angle. First the correlation matrix is estimated for a given
training region, and then the weight vectors are calculated using different presumed desired
signal angles. For this data set, the target is at 245°. In Figure 6.22, the training is done
using all 300 range cells. The non-adaptive beamformer fails, due to a large sidelobe, and
points in the direction of the interference. Both SMI and the eigencanceler detect the right
angle for the target. When the training is lowered to 50 cells, see Figure 6.23, the sidelobes
of the SMI are increased. The performance of the eigencanceler is almost unchanged. In
Figure 6.24, the training support is lowered to 28 cells. The performance of SMI is degraded
considerably and the eigencanceler’s performance is superior. Even with the target included
in the training set, the eigencanceler manages to detect the target, even though it is only a

few dB above the interference. The sidelobes of the eigencanceler are much lower than the
sidelobes of the SMI.

6.5.5 Signal Cancellation

In this section, signal cancelation due to the high desired signal component of the estimated
correlation matrix is studied. In Figure 6.25(a), the target range cell output relative to
sky noise, as a function of the number of training points, is plotted. The target region is
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included in the training set, therefore, when the training support is decreased the desired
signal component increases. The eigencanceler performs 4 dB better than SMI when the
training set is large. When the training set is decreased, the performance of the SMI is
affected more than the eigencanceler’s performance is. This plot only provides information
about how much the desired signal is preserved, but it does not give any information about
how much the interference is cancelled. To study clutter cancelation, the output at the
target range is plotted with respect to the background noise at the beamformer’s output
around the target region. The background noise level is calculated by taking the mean of
the beamformer’s output from 142 km to 165 km, over 150 points. The target region is not
included in the calculations of the mean. Comparing part (a) to part (b), the performance
of SMI approaches that of the eigencanceler. This shows that SMI cancels the interference
better than the eigencanceler, but the performance is still inferior because of the signal
cancelation effect. In Figure 6.25(c), instead of using a fixed region for calculation of the
mean as in part (b), the background noise power is calculated using exactly the same region
as the training. The performance of the SMI is improved even more because SMI cancels
interference in the training region more effectively, but it performs poorly cancelling the
interference outside the training region. This was also observed in the range detection plots
where a null was placed around the training region, as in Figure 6.16(b). In conclusion, SMI
cancels the desired signal as the number of training points is decreased.

The eigencanceler’s is a better estimator of global interference than SMI, even with a
localized correlation matrix. The eigencanceler uses the eigenvectors that correspond to the
largest eigenvalues, which is a better representation of the global interference. On the other
hand, SMI uses the inverse of the correlation matrix, which involves all the eigenvectors.
This is a much better estimate locally, but it is not very effective globally.

6.6 Discussion

In this chapter, the signal cancelation effects were studied when there is a mismatch between
the true desired signal and the presumed theoretical desired signal. Adaptive radar is
susceptible to signal cancelation effects when the target signal is included in the training
data and in the presence of pointing/calibration errors. It was shown, by analysis and illus-
trations from the Mountaintop dataset, that the SMI method is very sensitive to the presence
of the desired signal component in the estimated correlation matrix, and performance is
degraded even with small pointing/calibration errors. The eigenanalysis-based adaptive
radar is proven to be much more robust than the SMI method with respect to signal cance-
lation effects.

The design of calibration filters to minimize the mismatch was explained and the results of
the calibration filters were illustrated on the experimental data. Also the pulse compression
method to achieve high resolution was explained.
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CHAPTER 7

PERFORMANCE COMPARISON OF REDUCED RANK STAP
TECHNIQUES

Recent publications have shown the advantages of various forms of reduced-rank methods
over the full-rank SMI method [22, 1, 62]. The sample support required by reduced-rank
processing is only K = 2r, where r is the rank of the interference to be rejected. Equivalently,
for r € N and for the same sample support, the SNR loss associated with reduced-rank
methods is smaller than for the SMI.

In this chapter we review and compare several reduced-rank methods. First, we first
formulate the reduced-rank minimum variance beamformer (RR-MVB), which utilizes the
principal components of a specified matrix transformation. RR-MVB is equivalent to the
reduced-rank generalized sidelobe canceler (GSC). Another class of reduced-rank methods
are based on the cross-spectral metric (CSM) [63, 64]. Those are also presented in the GSC
context. The last of the reduced-rank methods reviewed is the eigencanceler [1]. It is inter-
esting to note that reduced-rank methods are generally evaluated by the error they produce
with respect to full-rank adaptive processing. When the true covariance matrix is known,
reduced-rank methods are suboptimal to the Wiener solution. However, our interest in
those methods arises since it has been shown that when the interference is contained within
a subspace of the signal space, and the interference+noise covariance matrix is estimated
from a dataset with limited support, reduced-rank methods actually outperform full-rank
adaptive processing. This is explained by the presence, in addition to thermal noise effects, of
errors resulting from the estimation process. Reduced-rank processing suppresses estimation
errors at the cost of a bias in the SNR. The net effect, however, is a significant performance
improvement for cases when the interference may be modeled as low-rank. Reduced-rank
methods are clearly important for STAP radar, where a large number of degrees of freedom
may be available. For a uniform array and for fixed PRF, the space-time clutter covariance
-matrix is essentially low-rank due to the inherent oversampling nature of the STAP archi-
tecture. Hence, the space-time radar problem is well suited to the application of techniques
that take advantage of the low-rank property.

7.1 Reduced Rank Processing with Known Covariance
A diagram of the reduced-rank MVB is shown in Figure 7.1.
The full-rank MVB weight vector is obtained as a solution to the optimization problem:

min wfRw  subject to  sfw =1, (7.1)
where R = E |xxf ] , Xi are snapshots of the secondary data, and s is the steering vector.
With RR-MVB, the vector x; is pre-processed by a full column rank N X r matrix transfor-
mation T. The RR data is then the r x 1 vector z; = TH”xy, the RR covariance matrix is
THRT, and the RR steering vector is t = T#s. The RR-MVB weight vector is the solution

to H
min w (TH RT) w  subject to (TH s) w =1, (7.2)
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and is given by the r x- 1 weight vector

k (TPRT) ™ T, (7.3)

W =
_ -1
where k = (SH T (TH RT) ' TH s) . Based on this weight vector, it is easy to show that
the optimal SNR, u, is given by

u=s"T (T#RT)" T, (7.4)

where to simplify notation, it is assumed that the target power o2 = 1.
The reduced-rank GSC is shown in Figure 7.2. From the figure it is observed that the
output can be expressed

y=y.(k) —y. (k) = Wf’xk — waHAxk, (7.5)

where w,, the weight vector of the nonadaptive portion, is just the steering vector w. = s,
w, is the adaptive weight, the matrix U is a full column rank transformation, and A is
set such the MVB and GSC methods are equivalent. The weight vector w, is found as the
solution to the unconstrained optimization problem

. " H_/ . &
min (s —A Uwa) R (s —A Uwa) s (7.6)
The overall GSC weight vector is then given by
W= (IN — A"U (U ARAU)™ UHAR) s, (7.7)

where Iy is the N-dimensional identity matrix. In [65] it is shown that for the MVB and
GSC methods to be equivalent, the following conditions need to be met: (¢)the matrix A
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must block the look direction, As = 0, (ii)s¥s = 1. Assuming that A has full column rank,
and that s is the only vector in the null space of A, the dimensions of A are (N-1)xN.
Consequently, the rank reducing matrix U is (N — 1) x r. Multiple linear constraints can be
incorporated in A resulting in a null space of dimension equal to the number of constraints.
The output SNR (when target power o2 = 1) is given by

_ -1
4= (sHRs — S"RAFU (UPARATU) ™ UHARs) (7.8)
Various choices of the rank reducing transformation U are now considered:

1. The goal is to maximize g. In turn, this is achieved by maximizing the term n =

Hp AH H Hyr\ 1 11H . . .
s"RAU (U ARA U) UH ARs. For a given reduced rank r, 7 is optimized by
a transformation U that meets the relation

AHU = Qla (79)

where Q, consists of the r principal eigenvectors of R. Assuming that the (N — 1) x N
signal blocking matrix A has full column rank, the elements of U can be obtained
from the solution of a least-squares problem. It is easy to show that with this choice
of U:

-1
p o= (s"Rs—s"QuA:Qf's)
= sHQ,A;'Qfs. (7.10)

2. To avoid the complication of a least-squares problem, let the matrix U be restricted
to consist of r of the (N — 1) eigenvectors of R, = ARA, where R, = Q]X@f +
—(321—265, and rank (Q_l) = r. A natural choice would be to let the rank reducing trans-
formation consist of the r principal eigenvectors of R,, i.e., U = Q;. A less intuitive,
but optimal approach is suggested in [63, 64]: construct U from the r eigenvectors of
R, that maximize the quantity

2
g ARs|

X
where §;, \; are respectively eigenvectors and eigenvalues of R,. In the references, this
method is referred as the cross-spectral metric (CSM) method.

(7.11)

3. Principal components decomposition, such as considered above, is data dependent.
Fixed, reduced-rank transformations can be constructed by selecting the principal
components of the discrete Fourier transform (DFT) or the discrete cosine transform
(DCT). The cross spectral metric can also be used in conjunction with these fixed
transforms [63, 64]. '

Rank-reducing transformations are now evaluated in the MVB framework. Consider the SNR
at the MVB output, as given by (7.4). When the transformation T is unitary, it has no effect
on the output SNR, and p = sHR™1s =fimax. For any N x r rank reducing transformation

T,r<N,u=s"T (TH RT) - THs < pmax. Specific examples are considered below.
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1. Consider how Case 1 of the GSC translates to the MVB framework. By substituting
(7.9) in (7.7), we obtain the equivalent MVB weight vector

w=(Iy - QQf)s. (7.12)

This relation establishes the equivalence between the reduced-rank GSC and the eigen-
canceler [1]. The eigencanceler is a method that produces the minimum norm weight
vector meeting the set of linear constraints, and subject to the additional constraint
of orthogonality to the interference subspace (formed by the principal eigenvectors of
the space-time covariance matrix). Since Q;QY = Iy — Q;Qf, the eigencanceler is
equivalent to the application of a rank reducing transformation T = Q,, where the
columns of Q, span the noise subspace of the covariance R. Indeed, (7.12) is obtained
by using T = Q, and ( 4.1) in (7.3). The eigencanceler requires that the partition of
eigenvectors into Q; and Q be such that the desired signal lies mostly in the noise
subspace (this is indeed the case when R is estimated from the secondary data). The
output SNR is given by

p o= s7Q; (QFRQ,)” Qffs

= s7Q;A;'Q]s
< ”max, (7-13)
where
Hmax = SHQIAI_I Q{Is + SHQ2A51Q£IS' (714)

2. The N x (r 4+ 1) matrix is given by T =[Qu, q,+1], i.e., it consists of the r principal
components of the signal-plus-interference subspace, augmented with one of the
eigenvectors of the noise subspace [62]. In this case T consists of the principal
components of the Karhunen-Loeve transform. The output SNR is given by u =
sHQiAT Qs + s¥q, 1A} qf;s. Note that if the look direction is in the noise
subspace of the transform T, i.e., TH#s = 0, there is no solution that meets the linear
constraint in (7.2). This problem is circumvented in [66] by the augmentation of T
with the vector s, [T,s] — T.

3. Similar to Case 3 of the GSC, the rank reducing transformation T may be constructed
from the principal components of a fixed transform such as the DFT or the DCT.

4. The columns of T may be designed using the cross-spectral metric approach.

In conclusion of this section, when the covariance matrix R is known, a rank reducing
transformation induces a loss in the SNR. In the next section, this loss will be incorporated
in the performance evaluation of the case when the covariance is not known and is evaluated
from the data.
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7.2 Reduced Rank Processing with Unknown Covariance

In practice, the space-time covariance matrix is not known and it needs to be estimated
from the secondary data, as explained in the previous chapters. This is the application for
which reduced rank methods are advantageous due to their improved statistical stability.
Let the number of snapshots from the secondary dataset be equal to K. Then the estimated
covariance matrix is given by R= % YK  xzxH. In this section, the performance of reduced-
rank processors is analyzed as a function of the sample support K.
With SMI, the full-rank MVB weight vector is given by w = R-'s. The CSNR can be
expressed as

(sH ﬁ‘ls)2 1
" sHR-1RR-!ss”R-1s’
The density of the conditioned SNR for the SMI method with Gaussian data has been
characterized in [10], and is given by the beta distribution with parameters K and N,

(7.15)

p

flp)=B(N)=C(1—p)"72 pK+1N, (7.16)

where C = T'(K+1) /(T (N -1)T(K +2-N)), and T'(K +1) = K! is the standard
gamma function. The notation B(N) emphasizes the signal space parameter N of the beta
distribution shown above. When a reduced-rank transformation T is applied to the data,
the CSNR can be written:
-~ 2
G 5i-1t) 1

P = S 1nS-1tsAR1s’ (T17)
where t = THs is an rx 1 vector, and ¥ = THRT, $ — THRT are r X r matrices. Of interest
is to determine the distribution of p for various reduced-rank methods. It is important to
distinguish between two cases: (1) the transformation T is fixed, (2) the transformation T
is data dependent. The former case applies when T is formed from the DFT or the DCT.
The transformation T is also fixed when it is formed by eigenvectors of the true covariance
R, but this case is of no great practical value as the assumption here is that R is not known.
Rather, T is formed from the eigenvectors of the estimated covariance R and, as such, is
data dependent. _
When T is fixed, (7.17) can be rewritten as follows:

P = PrPb, (718)

where p, is the reduced-rank CSNR,

(=) 1 719
pr = tHf;‘lZi"lt tHy-1¢ (r)’ ( . )

and pj is the bias in the optimal SNR introduced by the transformation T,

tHy-1t

Py = m (720)

Equations (7.18)-(7.20) clearly demonstrate the effect of reduced rank transformation on the
SMI-MVB method. The linear transformation T preserves the Gaussian distribution of the

95




data, hence the reduced-rank CSNR, p,, has a beta distribution B(r) with parameters K and
r. Improved statistical stability is evident in the higher CSNR values associated with g,. For
example, for the full-rank SMI, E [p] = 0.5 for K = 2N — 3 [10], while for the reduced-rank
SMI, E [p,] = 0.5 for K = 2r — 3, i.e., fewer samples are required for the same performance
level. The higher CSNR values due to improved statistical stability, are somewhat offset by
the bias py, which is the loss in the optimal SNR due to the rank reduction. This loss is the
quantity g/pmax analyzed in the previous section. The performance of the GSC processor
with a fixed rank-reducing transformation is analyzed in [67].

The case when T is data dependent cannot be directly derived from the SMI distribution.
The asymptotic density of the conditioned SNR for the eigencanceler (T consists of the noise
eigenvectors of the estimated covariance) is derived in [1].

7.3 Numerical Results

In this section are provided numerical results for several of the reduced-rank methods
presented in previous sections. The simulation model used an N, = 8 element array with
N; = 4 taps at each element. The clutter was located in the angular sector of 0 to 30
degrees. The steering vector was set at 50 degrees, and at a normalized Doppler frequency
of 0.4. The total input clutter-to-noise ratio (CNR) of the distributed clutter was 10 dB.
In Figure 7.3, the distribution of p based on 20,000 runs is shown for several reduced-rank
methods, as well as for full-rank SMI. The reduced-rank methods were: eigencanceler, DCT,
DFT, and CSM based on the eigen-decomposition and implemented as a GSC. The number
of principal components used to generate the results shown in the figure was r = 4 for
all methods. The CSM and eigencanceler methods are shown to produce the highest
CSNR’s, with reduced-rank MVB based on the DCT and DFT providing slightly lower
performance. All reduced-rank methods clearly outperform the full-rank SMI. Figure 7.4
plots the average probability of detection based on 200 runs and a false alarm probability
of 107%.  The figure illustrates the same trend as Figure 7.3; best detection performance
is provided by the eigencanceler and CSM, followed by DCT and DFT (indistinguishable),
and by the full-rank SMI. The effect of the rank order on the performance is illustrated in
Figure 7.5. In the figure, the CSNR is plotted as a function of rank of the rank-reducing
transformation.  For all methods it seems that r = 4 is the optimal rank order (for the
particular scenario considered). CSM provides slightly better performance when the rank
is underestimated. The DCT transformation seems to be the least affected by overesti-
mating the rank. Obviously, the rank has no effect on the SMI method. The effect of the
CNR on performance is illustrated in Figure 7.6. The CSNR is plotted as a function of the
input CNR. The CSNR is computed for a rank-reducing transformation with r = 4. As
the CNR increases, the interference power spills over more than 3-4 principal values. Thus
the rank reducing transformations are inadequate in capturing the interference power and
performance is degraded.
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CHAPTER 8

EIGENCANCELER APPLIED TO HPRF RADAR

In airborne radar, ground clutter returns from all ranges and angles appear to be moving
relative to the platform. These mainlobe and sidelobe clutter returns exist in the Doppler
region given by +2V f./c Hz, where V is the platform velocity, f. is the radar’s carrier
frequency, and c is the speed of light. The geometry for an airborne radar system is shown
in Figure 8.1. A clutter patch seen by the radar at an azimuth angle ¢ and an elevation
(depression) angle @ has a Doppler frequency f; = (2V/A)sin ¢cosf Hz, where A is the
wavelength corresponding to the transmitted carrier frequency. Radar systems, for missions
such as airborne early warning (AEW), may employ high pulse repetition frequency (HPRF)
waveforms to enhance long-range detection of high closing-rate targets which appear in the
clutter free region of the radar system’s Doppler spectrum. However, due to the range-
ambiguous nature of the HPRF waveform, strong near-range ground clutter returns received
in the antenna sidelobes cannot be simply gated out and are, therefore, folded in with desired
signal returns that fall within the Doppler bandwidth of the clutter. This chapter discusses
the application of space time adaptive processing (STAP) techniques for clutter suppression
in HPRF radar systems.

Space-time processing is a multidimensional filtering approach that mitigates interference in
range and Doppler simultaneously. STAP can improve the detection of low velocity targets
in mainlobe clutter or small targets in sidelobe clutter. In recent years, STAP has been
studied and applied mainly to low PRF (LPRF) radar [9, 61, 68, 69]. The application of
STAP to the HPRF radar problem presents a unique set of challenges and differences from
the traditional LPRF radar, which are discussed in the chapter.

Three STAP approaches will be investigated. The first is the pseudoinverse sample matriz
inversion (P-SMI) technique. With traditional SMI, the adaptive weight vector is computed
by taking the inverse of the sample covariance matrix. In HPRF radar, the sample support is
greatly reduced compared to LPRF due to range ambiguity effects. Hence the pseudoinverse
of the covariance matrix is used. The second method investigated is the diagonally loaded
SMI [70]. This method is traced back to the early 1980’s with publications by Abramovich
and Cheremisin [71, 72]. In this technique the singularity of the sample covariance matrix is
overcome by diagonal loading. The last STAP technique investigated is the eigencanceler(1].
The different STAP techniques are evaluated through a number of performance measures
such as output signal to clutter and noise ratio and probability of detection.

8.1 Problem Statement '
As a result of the airborne radar platform motion, regions of ground clutter can compete
in both range and Doppler with targets of interest. As illustrated in Figure 8.2, regions of
competing clutter for LPRF airborne radars are at the intersections of the target range ring
and iso-Dopplers ambiguous with the target Doppler.  Classical STAP techniques which
use range samples on either side of the target to form an estimate of the clutter covariance
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Figure 8.1 Geometry of the airborne radar problem.

Figure 8.2 Iso-Doppler, Iso-range ring map for LPRF radar.
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Figure 8.3 Iso-Doppler, Iso-range ring map for HPRF radar.

matrix have been shown to be effective in suppressing this competing clutter for LPRF
radars [9, 69].

Unlike the LPRF problem, for HPRF airborne radars, regions of competing clutter lie along
the iso-Doppler contour at points where the ambiguous range is the same as that of a target.
This is shown schematically in Figure 8.3. Due to the range-ambiguous nature of the
HPRF waveform, each range gate consists of the superposition of the returns from all visible
ambiguous ranges. Therefore, regions of strong sidelobe clutter, located at relatively short
ranges and steep grazing angles, cannot be gated out and are folded in with mainbeam target
returns. Another issue of much importance is sample support. Due to the nature of the
HPRF waveform, sample support for estimation of the clutter covariance matrix is limited
to the number of range gates available in the radar system. This limited sample support
can lead to ill-conditioning of the covariance matrix for classical STAP approaches, such as
SMI.

The application of innovative reduced rank STAP solutions, shown to outperform conven-
tional STAP techniques [22, 1, 7], is proposed to address the two problems of range ambiguity
and limited sample support associated with HPRF radar systems.

8.2 HPRF System’s Definitions and Properties
This section presents the system’s definitions and requirements for the HPRF radar system
discussed in this chapter. Also an explanation of the spectrum of the clutter seen by the
airborne radar for such a system is presented.

8.2.1 System’s Definitions

We use the same signal model presented in chapter 2, however, we define a few extra
parameters that are necessary for the discussion of HPRF radar.

The radar’s unambiguous range is related to the PRF":

Run = ¢/(2PRF). (8.1)
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If the target’s range extends beyond Run, the radar cannot measure the true range of the
target. Consequently, target returns may be folded over close range clutter echoes.

As a subsequence of (8.1), radar echoes will have an apparent range, Rapp, and a true range
which are be related by

Rapp = Rirye — Run[Rtrye/ Run); (8.2)

where the brackets denote integer part. The data vector X,, consists of the sum of contri-
butions of all the range cells folded onto the cell corresponding to index m. Also, the number
of independent data samples equals the number of range cells in an unambiguous range
interval. Let M be the number of range gates spanning the unambiguous range interval of
the radar. The maximum likelihood estimate of the space-time covariance matrix is given
again by
K
= XmXxg. (8.3)
m=1
The matrix is clearly singular if K < N. The parameter K is controlled by the radar’s range
resolution which is a direct function of the system’s bandwidth.

8.2.2 Degrees of Freedom

The number of the degrees of freedom that is needed for effective clutter cancelatlon is
determined by the rank of the clutter covariance matrix. In a typical airborne scenario and
a calibrated radar, eigen-decomposition, when applied to the covariance matrix, yields a few
large eigenvalues while the rest are relatively small. The number of significant eigenvalues
or equivalently the rank, can be predicted by the Landau-Pollak relation r = 2BT + 1,
where B is the clutter bandwidth and T is the time across the filter structure.

The Landau-Pollak relation can be applied to a space-time array as well. The rank of the
space-time covariance matrix has been studied in [1, 69]. Here we provide a brief argument
for illustrative purposes. For an array with elements at half-wavelength intervals, and a
point clutter source at azimuth angle ¢ with respect to the array normal and at elevation
angle 6, a space-time sample is given by,

Top = ejw(n—l)sin]d)cos& ej27r(k—l)u’ (84)

where v is the point source Doppler frequency normalized with respect to the PRF. The
maximum frequency space-time component is then

T = I TUNe=1)+2(Ne=1)vmax] (8.5)

where Vmax = 2V/() PRF) is the highest normalized Doppler component of the clutter
returns. It follows that the number of space-time samples requlred to represent the clutter
contributions is upper bounded

r S Ns + 2(Nt - ]-)Vmax- (86)

This is also the highest approximate rank of the clutter plus noise covariance matrix for
high clutter-to-noise ratio. In the case of a HPRF radar, vm.x < 1 since the clutter occupies
only a fraction of the Doppler spectrum. Thus, the HPRF problem is of lower rank than an
equivalent LPRF problem.
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Figure 8.4 HPRF Clutter Intensity map.

8.2.3 ‘J-Hook’ Clutter

In an airborne HPRF application, clutter enters the receiver primarily through the mainbeam
and principal elevation sidelobes. This is illustrated in the clutter intensity plot, shown in
Figure 8.4. It can be observed that at far ranges clutter returns are approximately parallel
to iso-Doppler contours. This implies little variation in the Doppler frequency. The clutter
ridge crosses increasingly more iso-Doppler contours as it gets closer to Nadir. This results in
the characteristic ‘J-Hook’ curvature of the clutter ridge in the range-Doppler domain. The
‘J-Hook’ is clearly visible on the range-Doppler plot shown in Figure 8.7 in the Numerical
Analysis section. As this plot illustrates, for the HPRF waveform, most of the Doppler band
is clutter free with mainlobe and sidelobe ground clutter returns located only in the Doppler
region given by f; = £2V/A.

8.3 STAP Techniques
This section describes the various STAP approaches used to combat clutter in HPRF radar.

8.3.1 Pseudoinverse SMI
As previously pointed out, the HPRF problem is characterized by low sample support which
may often result in an ill-conditioned covariance matrix estimate R (defined in (8.3)). For

such cases, the pseudoinverse R* = (f{H f{) - R¥ is substituted for R~!. The pseudoinverse
SMI (P-SMI) weight vector is then given by

w = R#s. (8.7)
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8.3.2 Diagonally Loaded SMI
The diagonally loaded SMI (L-SMI) is a modification of the traditional SMI method in
which a constant is added to the diagonal of the estimated covariance matrix R in order to
improve numerical conditioning. This constant is referred to as the loading factor. In [73] it
is suggested to choose a loading factor @ such that 62 < @ < Amin, where o is the noise
power, and Ami, denotes the smallest interference eigenvalue. The L-SMI weight vector is
then given by _

W= (f{ + aI) s, (8.8)

The loading of the covariance matrix decreases the fluctuations of the small eigenvalues,
which are predominantly noise eigenvalues, and as a result decreases fluctuations in w.

8.3.3 The Eigencanceler
The estimated covariance matrix of the clutter was obtained using (8.3). It has been shown
in [1], and as was previously derived in chapter 3, that the eigencanceler’s weight vector is
given by o .

w=(I-QQf)s=0Q,Qfs (8.9)

where 1, is the identity matrix.

8.4 Numerical Analysis

The simulation model assumed an N, = 8 elements array with a CPI of length NV, = 64.
The clutter was assumed to come from all elevation angles and was modeled to have a
complex-valued Gaussian distribution with zero-mean and variance equal to the clutter-to-
noise ratio (CNR). Attenuation due to free-space propagation was assumed proportional
to Rt_ﬁue’ where Rirye is true range of the cell under test. The CNR was set to 60 dB.
The radar parameters were assumed as follows: PRF = 25kHz, platform velocity V' = 250
m/s, platform altitude = 30,000 ft, and the transmitted frequency = 3.3 GHz. The target’s
range was 90 km, its Doppler frequency = 0.05xPRF, and the SNR = 48 dB. The radar’s
unambiguous range was about 6 km. '

Equations (8.7), (8.8), and (8.9) are used to calculate the space-time adaptive filter weights
for the P-SMI, L-SMI and eigencanceler, respectively. Figure 8.5 shows the density functions
of the conditioned signal-to-noise ratio (CSNR) for the three methods (the conditioning is
on the realization of the weight vector, which, in turn, depends on the covariance matrix
estimate). The term CSNR refers to the output effective SNR normalized by the optimal
SNR (obtained from the application of the true covariance matrix). The application of the
eigencanceler and L-SMI result in high values of the CSNR. Figure 8.6 shows the probability
of detection of the three STAP techniques showing similar results as in Figure 8.5. The range
ambiguous clutter map is shown in Figure 8.7. The clutter map post-processing is shown
in Figures 8.8 and 8.9 for L-SMI and the eigencanceler respectively. The near range clutter
masking the target has been rejected and the target is now evident.
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APPENDIX A

Derivations of equations (5.25) and (5.26)

This appendix provides the proof to (5.25) and (5.26). From (5.21), and through two
consecutive applications of the matrix inversion lemma, one obtains a closed form expression
for the inverse of the normalized covariance matrix:

R =1—v,ss” —ysisff

where v, and +; are defined in section 3. The gain to be calculated is defined in (5.22).
Consider the numerator and denominator of G, for the SMI weight vector in (5.23):

NUMI = [§"R7%s| (A1)
= || (1—)° (A.2)

where the inner product between the presumed and true steering vectors is | Ak l ! =

%%%12, 1 is the angle between the vectors as shown in Figure A.1, and it is assumed that
sHs; = 0. The denominator of the gain term is given by:
DEN1 = §R'R,R 15 (A.3)
2
= §H (I — ’ysSSH - 'yz-s,-sfl) s (A'4)
= s [I—fys (2 —7s)ss? — 7 (2 =) sisiH] s (A.5)

where R; = I+ &2s;s. Defining |p;|* = |s sz we obtain

DEN1 =1 —1,(2 =) |pl* — % (2 = %) |p2|”

and relation (5.25) follows.
For the eigencanceler from (5.24) we have:

NUM2 = [§7 (I-s:sF)s| (A.6)
= |of’ (A.7)
and
DEN2 = & (I-ss?) R, (I-s:s7)5 " (A8)
= 1—|pf* (A.9)
and relation (5.26) follows.
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